matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAufgabenblatt 7.2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Aufgabenblatt 7.2
Aufgabenblatt 7.2 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabenblatt 7.2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Fr 01.01.2021
Autor: ireallydunnoanything

Aufgabe 1
Es sei G eine endliche Gruppe. Der Exponent von G sei die kleinste Zahl n ∈ N, so dass [mm] g^n [/mm] = 1 für alle g ∈ G.

Zeigen Sie, dass der Exponent von G das kleinste gemeinsame Vielfache der Ordnungen der Elemente in G ist.

Aufgabe 2
Beweisen Sie: Ist m ∈ N mit [mm] g^m [/mm] = 1 gegeben für alle g in G, so teilt der Exponent m. Der Exponent von G teilt |G|.

Aufgabe 3
Was ist der Exponent von Z/nZ (n ∈ N) und von der Diedergruppe [mm] D_{2n} [/mm] mit 2n Elementen (n > 3)?

zu 1.) Wie kann ich zeigen, dass der Exponent G das KgV ist ? Ich habe dazu leider keinerlei Idee.

zu 2.) Zu einer Idee zu dieser Aufgabenstellung oder auch einen Hinweis auf das nötige Grundwissen zu dieser Aufgabe wäre ich sehr dankbar.

zu 3.) Ich weiß was eine Diedergruppe ist, kann es aber hier schlecht in meinen eigenen Worten erklären. Wie finde ich heraus was der Exponent ist ? Über eine Hilfestellung zu dieser Aufgabe würde ich mich sehr freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Aufgabenblatt 7.2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Sa 02.01.2021
Autor: statler

Hi!

> Es sei G eine endliche Gruppe. Der Exponent von G sei die
> kleinste Zahl n ∈ N, so dass [mm]g^n[/mm] = 1 für alle g ∈ G.
>  
> Zeigen Sie, dass der Exponent von G das kleinste gemeinsame
> Vielfache der Ordnungen der Elemente in G ist.

n ist Vielfaches jeder Elementordnung, also gemeinsames Vielfaches. Umgekehrt gilt für jedes gemeinsame Vielfache r der Elementordnungen [mm] g^{r} [/mm] = 1. Also sind die Mengen der n's und r's gleich und also auch ihre kleinsten Elemente.

>  Beweisen Sie: Ist m ∈ N mit [mm]g^m[/mm] = 1 gegeben für alle g
> in G, so teilt der Exponent m. Der Exponent von G teilt
> |G|.

Wir wissen aus 1: m ist gemeinsames Vielfaches der Elementordnungen und der Exponent das kleinste gemeinsame Vielfache, also teilt der Exponent m. |G| ist auch ein gemeinames Vielfaches der Elementordnungen, also teilt m auch |G|.

>  Was ist der Exponent von Z/nZ (n ∈ N) und von der
> Diedergruppe [mm]D_{2n}[/mm] mit 2n Elementen (n > 3)?

Z/nZ mit Addition ist eine zyklische Gruppe der Ordnung n, hat also ein Element der Ordnung n (nämlich die Klasse der 1), und das ist dann auch der Exponent.

Die Diedergruppe hat Elemente der Ordnung 2 und der Ordnung n. Was ist das kgV? Wenn n gerade ist, ist es n, andernfalls 2n.

Gruß Dieter

Bezug
                
Bezug
Aufgabenblatt 7.2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Sa 02.01.2021
Autor: ireallydunnoanything

Vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]