matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBegriffsklärung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Begriffsklärung
Begriffsklärung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begriffsklärung: "schließlich"
Status: (Frage) beantwortet Status 
Datum: 11:20 Sa 04.08.2012
Autor: schachuzipus


Hallo zusammen,

in meinem Stoch1-Skript treffe ich desöfteren auf den Ausdruck "schließlich" oder "schließlich für ein n", gemeint im Sinne von:

"eine Aussage gilt schließlich für ein n".

Leider ist in keiner Weise erklärt, was das bedeutet. Auch eine (zugegeben sehr kurze) Suche über google lässt mich nichts finden.

Ich würde meinen, das ist wie bei den Grenzwerten so gemeint, dass es ein [mm]n_0[/mm] gibt, so dass die Ausssage für alle [mm]n\ge n_0[/mm] gilt.

Stimmt das oder kennt jemand eine genaue Definition/Bedeutung von "schließlich für ein n" oder einen link zu einer Erklärung?

Danke schonmal!

Gruß

schachuzipus


        
Bezug
Begriffsklärung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Sa 04.08.2012
Autor: M.Rex

Hallo schachuzipus


>
> Hallo zusammen,
>  
> in meinem Stoch1-Skript treffe ich desöfteren auf den
> Ausdruck "schließlich" oder "schließlich für ein n",
> gemeint im Sinne von:
>  
> "eine Aussage gilt schließlich für ein n".
>  
> Leider ist in keiner Weise erklärt, was das bedeutet. Auch
> eine (zugegeben sehr kurze) Suche über google lässt mich
> nichts finden.
>  
> Ich würde meinen, das ist wie bei den Grenzwerten so
> gemeint, dass es ein [mm]n_0[/mm] gibt, so dass die Ausssage für
> alle [mm]n\ge n_0[/mm] gilt.

So würde ich das auch verstehen, "schließlich ein n" bedeutet in den Fällen, die ich gefunden habe, dass man das kleinste n nimmt, dass eine gewünschte Eigenschaft hat.

>  
> Stimmt das oder kennt jemand eine genaue
> Definition/Bedeutung von "schließlich für ein n" oder
> einen link zu einer Erklärung?

"Schließlich für ein n" taucht in folgenden Links auf, mit der Bedeutung, dass das kleinstmögliche n gemeint ist.

http://de.enc.tfode.com/Topologische_Transitivit%C3%A4t
http://www.biologie-seite.de/Biologie/Topologische_Transitivit%C3%A4t
http://www.mathematik.uni-kassel.de/~koepf/Publikationen/bieberbach.pdf
(Seite 11/12, im Übergang)


>  
> Danke schonmal!
>  
> Gruß
>  
> schachuzipus
>  

Marius


Bezug
                
Bezug
Begriffsklärung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Di 07.08.2012
Autor: schachuzipus

Hallo Marius,

danke, aber ich hatte die Formulierung nur vage in Erinnerung.

Richtig heißt es "schließlich für alle n" und meint genau das, was ich vermutet habe.


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]