matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert rekursiver Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwert rekursiver Folge
Grenzwert rekursiver Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert rekursiver Folge: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:20 Do 21.07.2016
Autor: phifre

Aufgabe
Seien [mm] $a,b\in\mathbb{R}$ [/mm] und die Folge [mm] $(a_n)_{n\in\mathbb{N}_0}$ [/mm] rekursiv definiert durch $$ [mm] a_0=a,\qquad a_1=b,\qquad a_n=\bruch{1}{3}(2a_{n-1}+a_{n-2})\quad \mbox{für } n\geq [/mm] 2. $$
Man beweise, dass die Folge konvergiert und bestimme den Grenzwert.

Hallo,

Ich komme bei dieser Aufgabe leider nicht weiter..
Ich habe schon den Ansatz durch der Telekopsumme mit
$$ [mm] a_n=a_0-\sum_{k=0}^{n-1} (a_k-a_{k+1}) [/mm] $$
und
[mm] $$a_k-a_{k+1}=\frac{1}{3}(a_k+a_{k-1})$$ [/mm]
probiert, befürchte aber, dass ich da in einer Sackgasse bin.

Für Tipps wäre ich sehr dankbar!

Liebe Grüße


        
Bezug
Grenzwert rekursiver Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Do 21.07.2016
Autor: fred97

1. Zeige induktiv:

  [mm] |a_{n+1}-a_n| \le \bruch{1}{3^n}|b-a| [/mm]  für n [mm] \ge [/mm] 0.

2. Zeige dann (ich hoffe ich hab mich nicht vereechnet):

  [mm] |a_{n+k}-a_n| \le \bruch{1}{3^{n-1}}* (\bruch{2}{3})^k|b-a| [/mm]  für n,k [mm] \in \IN. [/mm]

Aus 2. folgt: [mm] (a_n) [/mm] ist eine Cauchyfolge.

FRED

Bezug
                
Bezug
Grenzwert rekursiver Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:31 Do 21.07.2016
Autor: phifre

Vielen Dank für die Antwort! Ich habs noch nicht nachgerechnet, aber das sieht ganz Vielversprechen aus.

Wie komme ich aber an den Grenzwert?


Bezug
                        
Bezug
Grenzwert rekursiver Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Fr 22.07.2016
Autor: hippias

Man benötigt zuerst eine Vermutung. Welchen Grenzwert vermutest Du? Wenn Du noch keine Idee hast, dann rechne die Folge mit verschieden Startwerten durch, bis Du den Grenzwert in Abhängigkeit von $a$ und $b$ angeben kannst. Dann kann man versuchen Deine Vermutung zu beweisen.  

Bezug
                                
Bezug
Grenzwert rekursiver Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:19 Fr 22.07.2016
Autor: phifre

Was wäre denn eine Vermutung?
Ich habe schon versucht das ganze in eine geschlossene Form zu bringen, ist mir aber leider nicht gelungen.. Beim ausrechnen der Folgenglieder werden diese nur immer länger mit Brüchen davor..

Bezug
                                        
Bezug
Grenzwert rekursiver Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Fr 22.07.2016
Autor: HJKweseleit

Mache folgenden Ansatz:

[mm] a_n=\bruch{1}{3}(2a_{n-1}+a_{n-2}) [/mm]

[mm] a_n+ka_{n-1}=r(a_{n-1}+ka_{n-2}) [/mm]

1. Stelle die 2. Gleichung so um, dass du sie mit der ersten vergleichen kannst, und bestimme daraus k und r.

2. Nenne nun [mm] c_n=a_n+ka_{n-1}. [/mm] damit reduziert sich deine Gleichung nun auf [mm] c_n=rc_{n-1}. [/mm]

3. Jetzt findest du leicht eine Formel für [mm] c_n. [/mm] Zur Kontrolle: [mm] c_n [/mm] = [mm] \bruch{1}{3}a+b [/mm] unabhängig von n.

4. Dann musst du noch das ganze so entflechten, dass du eine Formel für [mm] a_n [/mm] erhältst. Zunächst bekommst du einen Ausdruck der Form

[mm] a_n=s*a_{n-1}+v. [/mm]     (*)

Daraus machst du wieder

[mm] a_n+w=s*(a_{n-1}+w), [/mm] dabei stellst du nach [mm] a_n [/mm] um und vergleichst mit (*). So erhältst du s und w.


Daraus kannst du nun [mm] a_n [/mm] bestimmen.

Zur Kontrolle: [mm] a_n=\bruch{1}{4}a+\bruch{3}{4}b+(- \bruch{1}{3})^n*\bruch{3}{4}(a [/mm] - b)




Bezug
                                                
Bezug
Grenzwert rekursiver Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:42 Fr 22.07.2016
Autor: phifre

Vielen Dank erstmal für die ausführliche Antwort!

Ich konnte leider noch nicht nachvollziehen, wie Du aus der letzten Gleichung auf [mm] $a_n$ [/mm] kommst..
Zur Kontrolle: Ich habe in meiner Rechnung [mm] $$r=1,\quad k=\frac{1}{3}$$ [/mm] und [mm] $$s=\frac{1}{3}\cdot\frac{1}{b+\frac{1}{3}a},\quad w=-b-\frac{1}{3}a.$$ [/mm] Hast Du das Gleiche?

Liebe Grüße

Bezug
                                                        
Bezug
Grenzwert rekursiver Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Sa 23.07.2016
Autor: phifre

Danke, hat sich durch Deine Korrektur geklärt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]