matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMenge in der Potenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Menge in der Potenz
Menge in der Potenz < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge in der Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Di 24.04.2018
Autor: Mandy_90

Hallo Leute,
ich hab mal eine allgemeine Frage. Sei [mm] M=\{1,2,3 \} [/mm] eine Menge. Was ist dann [mm] 2^{M} [/mm] ? Ist das überhaupt definiert ?

lg
Mandy

        
Bezug
Menge in der Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Di 24.04.2018
Autor: Diophant

Hallo,

> Hallo Leute,
> ich hab mal eine allgemeine Frage. Sei [mm]M=\{1,2,3 \}[/mm] eine
> Menge. Was ist dann [mm]2^{M}[/mm] ? Ist das überhaupt definiert ?

>

Ja: das ist eine von mehreren gebräuchlichen Schreibweisen für die Potenzmenge einer Menge. D.h. in diesem Fall:

[mm]2^M= \left \{ \emptyset;\left \{1\right \};\left \{2\right \};\left \{3\right \}; \left \{ 1;2 \right \}; \left \{1;3 \right \} \left\{ 2;3\right \} \left\{ 1;2;3 \right \} \right \}[/mm]


Gruß, Diophant

Bezug
        
Bezug
Menge in der Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Di 24.04.2018
Autor: fred97


> Hallo Leute,
>  ich hab mal eine allgemeine Frage. Sei [mm]M=\{1,2,3 \}[/mm] eine
> Menge. Was ist dann [mm]2^{M}[/mm] ? Ist das überhaupt definiert ?
>  
> lg
>  Mandy  

Diophant hat ja das Relevante gesagt.  Aber man sollte noch erwähnen, woher diese Bezeichnungsweise  kommt:

Hat M n Elemente , so hat die Potenzmenge von M [mm] 2^n [/mm] Elemente.

Bezug
        
Bezug
Menge in der Potenz: mengentheoret. Hintergrund
Status: (Antwort) fertig Status 
Datum: 17:30 Di 24.04.2018
Autor: Al-Chwarizmi


> Hallo Leute,

> ich hab mal eine allgemeine Frage. Sei [mm]M=\{1,2,3 \}[/mm] eine
> Menge. Was ist dann [mm]2^{M}[/mm] ? Ist das überhaupt definiert ?


Hallo Mandy

Noch eine weitere Ergänzung:
Um diese Schreibweise mengentheoretisch zu verstehen, sollte
man noch wissen, dass für zwei beliebige Mengen $\ A$ und $\ B$
die Menge  $\ [mm] P\, [/mm] :=\ [mm] A^B$ [/mm]  definiert ist als die Menge aller
möglichen Funktionen von $\ B$ nach $\ A$.

Jede einzelne solche Funktion hat als Definitionsmenge die
Menge $\ B$, und alle ihre (jeweils eindeutig festgelegten) Werte
sind Elemente von $\ A$.

Um nun die Schreibweise  $\ [mm] 2^M$ [/mm]  (mit einer gegebenen Menge M)
in dieser Weise interpretieren zu können, muss auch die Basis
$\ 2$ in dieser Notation als eine Menge aufgefasst werden können.
Dies macht man in der axiomatischen Mengenlehre so, dass man
festsetzt:

$\ [mm] 2\,:= \{0,1\}$ [/mm]

aufbauend auf

$\ [mm] 0\,:=\ \{\}$ [/mm]            (leere Menge)
$\ [mm] 1\,:=\ \{0\}\ [/mm] =\ [mm] \{\{\}\}$ [/mm]     (Menge mit dem einzigen Element 0 )

Ausführlich notiert ist dann also  $\ [mm] 2\,=\ \{0,1\}\ [/mm] =\ [mm] \{\{\},\{\{\}\}\}$ [/mm]

Soweit ein kleiner Einblick in die Methode, nach der man in
der axiomatischen Mengenlehre (nach Zermelo-Fraenkel) das
Zahlenreich quasi aus dem "Nichts" aufbaut ...

Kommen wir jetzt konkret zum Beispiel der Menge

        $\ [mm] P\,:=\ 2^M$ [/mm]  mit  $\ [mm] M\,=\, \{1,2,3\}$ [/mm]

Die Menge P enthält alle Funktionen mit Definitionsbereich M
und mit Werten in der Menge  $\ 2$ = {0,1}.

Ein ganz konkretes Beispiel eines Elementes von P wäre also
etwa die Funktion  $\ [mm] f:\, M\,\mapsto\, [/mm] 2 $  mit

     f(1) = 1
     f(2) = 0
     f(3) = 1

Diese Funktion f kann man nun z.B. auch eindeutig charakterisieren,
indem man einfach die Menge jener Elemente von M angibt, welchen
der Wert 1 zugeordnet ist. Im vorliegenden Beispiel also die Menge
  
     $\ [mm] T_f(M)\ [/mm] =\ [mm] \{1,3\}$ [/mm]

Für jedes Element  $\ [mm] x\,\in\, [/mm] M$  gelte:   $\ [mm] x\,\in T_f(M)\ \gdw\ f(x)\,=\,1$ [/mm]

Es ist nun leicht zu zeigen, dass die Menge aller möglichen Funktionen

     $\ [mm] f:\, M\,\mapsto\, [/mm] 2 $

äquivalent ist zur Menge aller Teilmengen von M, also zur sogenannten
"Potenzmenge" von M.
Auch dass diese Menge dann jeweils [mm] 2^m [/mm] Elemente besitzt, wenn die
Menge M aus m Elementen besteht, ist dann trivial.

Die Bezeichnung "Potenzmenge" für die Menge aller Teilmengen einer
vorliegenden Menge ist aber so gesehen eigentlich nur ein recht simpler
Spezialfall unter einem im Kern betrachtet wesentlich reichhaltigeren
Begriff.

LG ,   Al-Chwarizmi



Bezug
                
Bezug
Menge in der Potenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Do 26.04.2018
Autor: Mandy_90

Danke Al-Chwarizmi,  dass du das so ausführlich erklärt hast. Das hat mir sehr geholfen.

lg
Mandy_90

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 0m 5. kcin
MaßTheo/Bestimmung einer Menge
Status vor 8h 21m 2. fred97
UAnaInd/Vollständige Induktion
Status vor 9h 59m 9. Roadrunner
UKomplx/komplexe Wurzelfunktion
Status vor 23h 20m 6. questionpeter
UWTheo/Markov-Kette
Status vor 1d 0h 25m 7. sancho1980
IntTheo/Uneigentliches Integral
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]