matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenNichtproportionale Verdoppelun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Nichtproportionale Verdoppelun
Nichtproportionale Verdoppelun < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtproportionale Verdoppelun: Funktion gesucht
Status: (Frage) beantwortet Status 
Datum: 22:11 Mo 11.09.2017
Autor: HJKweseleit

Aufgabe
Gesucht ist eine Funktion f(x), x [mm] \in \IR^{>0}, [/mm] mit folgenden Eigenschaften:
1. Die Funktion ist nicht linear.
2. Trotzdem gilt für alle x [mm] \in \IR^{>0}: [/mm] f(2x)=2*f(x).

a) Keine weiteren Anforderungen an die Funktion.
b) Zusätzlich: f(x) ist im Definitionsbereich stetig.
c) Die Funktion aus b) soll einen "möglichst einfachen" Funktionsterm haben.



Bei der Wiederholung der Proportionalität in einer 10. Schulklasse meinte ein Schüler, die Forderung "zum doppelten Argument gehört der doppelte Funktionswert" würde für die Definition der Proportionalität hinreichend sein.

Ich habe dazu a) eine unstetige, b) eine komplizierte stetige, abschnittsweise definierte und c) eine relativ elegante einfache stetige  Funktion (nur ein Funktionsterm) mit den obigen Eigenschaften gefunden, die ich hier zunächst nicht angeben will, um die Richtung weiterer Lösungen nicht zu beeinflussen.

Vielleicht findet jemand insbesondere zu c) einen einfachen Funktionsterm.



        
Bezug
Nichtproportionale Verdoppelun: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mo 11.09.2017
Autor: Chris84


> Gesucht ist eine Funktion f(x), x [mm]\in \IR^{>0},[/mm] mit
> folgenden Eigenschaften:
>  1. Die Funktion ist nicht linear.
>  2. Trotzdem gilt für alle x [mm]\in \IR^{>0}:[/mm] f(2x)=2*f(x).
>  
> a) Keine weiteren Anforderungen an die Funktion.
>  b) Zusätzlich: f(x) ist im Definitionsbereich stetig.
>  c) Die Funktion aus b) soll einen "möglichst einfachen"
> Funktionsterm haben.
>  
>
> Bei der Wiederholung der Proportionalität in einer 10.
> Schulklasse meinte ein Schüler, die Forderung "zum
> doppelten Argument gehört der doppelte Funktionswert"
> würde für die Definition der Proportionalität
> hinreichend sein.
>  
> Ich habe dazu a) eine unstetige, b) eine komplizierte
> stetige, abschnittsweise definierte und c) eine relativ
> elegante einfache stetige  Funktion (nur ein Funktionsterm)
> mit den obigen Eigenschaften gefunden, die ich hier
> zunächst nicht angeben will, um die Richtung weiterer
> Lösungen nicht zu beeinflussen.
>  
> Vielleicht findet jemand insbesondere zu c) einen einfachen
> Funktionsterm.
>  
>  

Huhu,
ich versuche mich mal. Denkst du bei a) an

[mm] $f(x)=\left\{\begin{array}{c} x, \textnormal{wenn} x\in\IR\backslash\IQ \\ 0, \textnormal{wenn} x\in\IQ\end{array}\right.$ [/mm]

Dann ist offensichtlich $f(2x)=2f(x)$, aber [mm] $f(\sqrt{2})+f(5-\sqrt{2})=\sqrt{2}+5-\sqrt{2}=5\not= 0=f(5)=f(\sqrt{2}+5-\sqrt{2})$. [/mm]

Gruss,
Chris

Bezug
                
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Mo 11.09.2017
Autor: HJKweseleit


> > Gesucht ist eine Funktion f(x), x [mm]\in \IR^{>0},[/mm] mit
> > folgenden Eigenschaften:
>  >  1. Die Funktion ist nicht linear.
>  >  2. Trotzdem gilt für alle x [mm]\in \IR^{>0}:[/mm]
> f(2x)=2*f(x).
>  >  
> > a) Keine weiteren Anforderungen an die Funktion.
>  >  b) Zusätzlich: f(x) ist im Definitionsbereich stetig.
>  >  c) Die Funktion aus b) soll einen "möglichst
> einfachen"
> > Funktionsterm haben.
>  >  
> >
> > Bei der Wiederholung der Proportionalität in einer 10.
> > Schulklasse meinte ein Schüler, die Forderung "zum
> > doppelten Argument gehört der doppelte Funktionswert"
> > würde für die Definition der Proportionalität
> > hinreichend sein.
>  >  
> > Ich habe dazu a) eine unstetige, b) eine komplizierte
> > stetige, abschnittsweise definierte und c) eine relativ
> > elegante einfache stetige  Funktion (nur ein Funktionsterm)
> > mit den obigen Eigenschaften gefunden, die ich hier
> > zunächst nicht angeben will, um die Richtung weiterer
> > Lösungen nicht zu beeinflussen.
>  >  
> > Vielleicht findet jemand insbesondere zu c) einen einfachen
> > Funktionsterm.
>  >  
> >  

>
> Huhu,
>  ich versuche mich mal. Denkst du bei a) an
>  
> [mm]$f(x)=\left\{\begin{array}{c} x, \textnormal{wenn} x\in\IR\backslash\IQ \\ 0, \textnormal{wenn} x\in\IQ\end{array}\right.$[/mm]
>  
> Dann ist offensichtlich [mm]f(2x)=2f(x)[/mm],

Ja, das ist eine einfach zu beschreibende Möglichkeit, für Schüler schwer verständlich. Ich selber hatte die Funktion

[mm] f(x)=2^{\lfloor log_2(x)\rfloor}, [/mm] wobei die Gaussklammer die Abrundung nach unten meint. Der Term ist zwar komplizierter, aber der Graph eine anschaulich schöne Treppenfunktion.

f(x) hat den Wert
1 für x [mm] \in [/mm] [1|2[,
2 für x [mm] \in [/mm] [2|4[,
3 für x [mm] \in [/mm] [4|8[,
4 für x [mm] \in [/mm] [8|16[...
und
0,5   für x [mm] \in [/mm] [0,5|1[,
0,25  für x [mm] \in [/mm] [0,25|0,5[...


aber

> [mm]f(\sqrt{2})+f(5-\sqrt{2})=\sqrt{2}+5-\sqrt{2}=5\not= 0=f(5)=f(\sqrt{2}+5-\sqrt{2})[/mm].

Der Einwand ist unbegründet, deine Lösung ist ok.

>  
> Gruss,
>  Chris


Bezug
                        
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:37 Di 12.09.2017
Autor: Chris84


> > > Gesucht ist eine Funktion f(x), x [mm]\in \IR^{>0},[/mm] mit
> > > folgenden Eigenschaften:
>  >  >  1. Die Funktion ist nicht linear.
>  >  >  2. Trotzdem gilt für alle x [mm]\in \IR^{>0}:[/mm]
> > f(2x)=2*f(x).
>  >  >  
> > > a) Keine weiteren Anforderungen an die Funktion.
>  >  >  b) Zusätzlich: f(x) ist im Definitionsbereich
> stetig.
>  >  >  c) Die Funktion aus b) soll einen "möglichst
> > einfachen"
> > > Funktionsterm haben.
>  >  >  
> > >
> > > Bei der Wiederholung der Proportionalität in einer 10.
> > > Schulklasse meinte ein Schüler, die Forderung "zum
> > > doppelten Argument gehört der doppelte Funktionswert"
> > > würde für die Definition der Proportionalität
> > > hinreichend sein.
>  >  >  
> > > Ich habe dazu a) eine unstetige, b) eine komplizierte
> > > stetige, abschnittsweise definierte und c) eine relativ
> > > elegante einfache stetige  Funktion (nur ein Funktionsterm)
> > > mit den obigen Eigenschaften gefunden, die ich hier
> > > zunächst nicht angeben will, um die Richtung weiterer
> > > Lösungen nicht zu beeinflussen.
>  >  >  
> > > Vielleicht findet jemand insbesondere zu c) einen einfachen
> > > Funktionsterm.
>  >  >  
> > >  

> >
> > Huhu,
>  >  ich versuche mich mal. Denkst du bei a) an
>  >  
> > [mm]$f(x)=\left\{\begin{array}{c} x, \textnormal{wenn} x\in\IR\backslash\IQ \\ 0, \textnormal{wenn} x\in\IQ\end{array}\right.$[/mm]
>  
> >  

> > Dann ist offensichtlich [mm]f(2x)=2f(x)[/mm],
>
> Ja, das ist eine einfach zu beschreibende Möglichkeit,
> für Schüler schwer verständlich. Ich selber hatte die
> Funktion
>  
> [mm]f(x)=2^{\lfloor log_2(x)\rfloor},[/mm] wobei die Gaussklammer
> die Abrundung nach unten meint. Der Term ist zwar
> komplizierter, aber der Graph eine anschaulich schöne
> Treppenfunktion.
>  
> f(x) hat den Wert
> 1 für x [mm]\in[/mm] [1|2[,
>  2 für x [mm]\in[/mm] [2|4[,
>  3 für x [mm]\in[/mm] [4|8[,
>  4 für x [mm]\in[/mm] [8|16[...
>  und
>  0,5   für x [mm]\in[/mm] [0,5|1[,
>  0,25  für x [mm]\in[/mm] [0,25|0,5[...
>  
>
> aber
> > [mm]f(\sqrt{2})+f(5-\sqrt{2})=\sqrt{2}+5-\sqrt{2}=5\not= 0=f(5)=f(\sqrt{2}+5-\sqrt{2})[/mm].
>  
> Der Einwand ist unbe*gründet, deine Lösung ist ok.

Naja, ich kenne Linearitaet im Wesentlichen definiert durch

i) $f(ax)=af(x)$ und
ii) $f(x+y)=f(x)+f(y)$

Da i) gilt, muss man zeigen [EDIT: nicht fuer alle $a$], dass ii) nicht fuer alle Paare $(x,y)$ gilt, daher noch dieses Beispiel....


>  >  
> > Gruss,
>  >  Chris
>  


Bezug
                                
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Di 12.09.2017
Autor: Gonozal_IX

Hiho,

> Da i) gilt

dem widerspreche ich mal vehement!
Offensichtlich ist für jedes irrationale [mm] $x\not= [/mm] 0$ und $a = [mm] \frac{1}{x}$ [/mm] die Gleichung nicht erfüllt…

Gruß,
Gono

Bezug
                                        
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Di 12.09.2017
Autor: Chris84

Richtig... danke fuer den Hinweis :)

Bezug
        
Bezug
Nichtproportionale Verdoppelun: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 11.09.2017
Autor: donquijote

Hallo,
zu c) werfe ich mal [mm]f(x)=x*\sin(2\pi\log_2x)[/mm] in den Raum.
Zu a) und b) kann man eine beliebige Funktion [mm]f_0:[1,2)\to\mathbb{R}[/mm] betrachten.
Dann erfüllt die durch [mm]f(2^k*x)=2^k*f_0(x)[/mm] für [mm]k\in\mathb{Z}[/mm] und [mm]1\le x<2[/mm] definierte Funktion f die Bedingung.
f ist genau dann stetig, wenn [mm]f_0[/mm] stetig ist und [mm]\lim_{x\to 2-0}f_0(x)=2f_0(1)[/mm].

Bezug
                
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:25 Di 12.09.2017
Autor: HJKweseleit


> Hallo,
>  zu c) werfe ich mal [mm]f(x)=x*\sin(2\pi\log_2x)[/mm] in den Raum.

Zapperlot! Die hatte ich auch. Allerdings nicht so schnell wie du gefunden. Zunächst hatte ich für a) die in meiner obigen Mitteilung angegebene Treppenfunktion

[mm] f(x)=2^{\lfloor log_2(x)\rfloor}, [/mm] die aber unstetig ist [mm] (\lfloor \rfloor [/mm] ist die Gauss-Klammer).

Dann habe ich  - graphisch gesprochen - die Treppenstufen in der Mitte nach oben abgeknickt und zum Startpunkt der nachsten Treppenstufe geführt. Den Term weiß ich nicht mehr; da ich das ganze Plotten wollte und im Plotprogramm keine abschnittsweise definierten Funktionen möglich waren, war das Ganze ein wildes Gebilde mit vielen Gaussklammern. Ich habe dazu zwei Teilfunktionen gebildet. Die erste Hälfte der jeweiligen Treppenstufe sollte bleiben, die zweite Hälfte bei allen Abschnitten den Wert 0 annehmen (1. Teilfunktion). Für die Anschlussstrecke von der Intervallmitte zu nächsten Stufe sollte die Funktion auf der ersten Hälfte einer jeweiligen Stufe 0 sein, bei der 2. Hälfte eine Gerade mit der Steigung 2 (2. Teilfunktion). Die beiden Teilfunktionen wurden dann zu einer einzigen addiert.

Zu deiner Funktion kann man übrigens noch z.B. 2x hinzuaddieren, wenn man mit den Funktionswerten im positiven Bereich bleiben will.


>  Zu a) und b) kann man eine beliebige Funktion
> [mm]f_0:[1,2)\to\mathbb{R}[/mm] betrachten.
>  Dann erfüllt die durch [mm]f(2^k*x)=2^k*f_0(x)[/mm] für
> [mm]k\in\mathb{Z}[/mm] und [mm]1\le x<2[/mm] definierte Funktion f die
> Bedingung.
>  f ist genau dann stetig, wenn [mm]f_0[/mm] stetig ist und
> [mm]\lim_{x\to 2-0}f_0(x)=2f_0(1)[/mm].

Ja, aber ich habe genau nach so etwas schönem wie oben gesucht.

Bezug
                        
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Di 12.09.2017
Autor: donquijote

Hallo,
ich habe mir noch folgende Verallgemeinerung überlegt:
Zu einer Funktion f mit f(2x)=2f(x) für alle x>0 setze [mm]g(x)=\frac{f(2^x)}{2^x}[/mm].
Dann ist g auf ganz [mm]\mathbb{R}[/mm] definiert mit g(x+1)=g(x) für alle x.
Ist umgekehrt g eine beliebige auf [mm]\mathbb{R}[/mm] definierte 1-periodische Funktion, so gilt f(2x)=2f(x) für [mm]f(x)=x*g(\log_2x)[/mm].
Und auch hier ist f genau dann stetig, wenn g stetig ist.

Bezug
                
Bezug
Nichtproportionale Verdoppelun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:44 Di 12.09.2017
Autor: Chris84


> Hallo,
>  zu c) werfe ich mal [mm]f(x)=x*\sin(2\pi\log_2x)[/mm] in den Raum.

Huebsch :)

>  Zu a) und b) kann man eine beliebige Funktion
> [mm]f_0:[1,2)\to\mathbb{R}[/mm] betrachten.
>  Dann erfüllt die durch [mm]f(2^k*x)=2^k*f_0(x)[/mm] für
> [mm]k\in\mathb{Z}[/mm] und [mm]1\le x<2[/mm] definierte Funktion f die
> Bedingung.

Das versteh ich nicht. Sei o.B.d.A. $k=1$, dann also [mm] $f(2x)=2\cdot f_0(x)$. [/mm] Dann ist offensichtlich [mm] $f(4x)=f(2\cdot 2x)=2\cdot f_0(2x)$. [/mm] Aber wiese soll das denn gleich [mm] $4\cdot f_0 [/mm] (x)=2f(2x)$ sein? Was uebersehe ich hier?

>  f ist genau dann stetig, wenn [mm]f_0[/mm] stetig ist und
> [mm]\lim_{x\to 2-0}f_0(x)=2f_0(1)[/mm].


Bezug
                        
Bezug
Nichtproportionale Verdoppelun: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Di 12.09.2017
Autor: donquijote


> > Hallo,
>  >  zu c) werfe ich mal [mm]f(x)=x*\sin(2\pi\log_2x)[/mm] in den
> Raum.
>  
> Huebsch :)
>  
> >  Zu a) und b) kann man eine beliebige Funktion

> > [mm]f_0:[1,2)\to\mathbb{R}[/mm] betrachten.
>  >  Dann erfüllt die durch [mm]f(2^k*x)=2^k*f_0(x)[/mm] für
> > [mm]k\in\mathb{Z}[/mm] und [mm]1\le x<2[/mm] definierte Funktion f die
> > Bedingung.
>  
> Das versteh ich nicht. Sei o.B.d.A. [mm]k=1[/mm], dann also
> [mm]f(2x)=2\cdot f_0(x)[/mm]. Dann ist offensichtlich [mm]f(4x)=f(2\cdot 2x)=2\cdot f_0(2x)[/mm].
> Aber wiese soll das denn gleich [mm]4\cdot f_0 (x)=2f(2x)[/mm] sein?
> Was uebersehe ich hier?

Hallo,
mit k=2 ist [mm]f(2*2x)=f(4x)=4f_0(x)=2*f(2x)[/mm].
Damit passt alles (auch analog für andere Zweierpotenzen).

>  
> >  f ist genau dann stetig, wenn [mm]f_0[/mm] stetig ist und

> > [mm]\lim_{x\to 2-0}f_0(x)=2f_0(1)[/mm].
>  


Bezug
                                
Bezug
Nichtproportionale Verdoppelun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:10 Di 12.09.2017
Autor: Chris84


> > > Hallo,
>  >  >  zu c) werfe ich mal [mm]f(x)=x*\sin(2\pi\log_2x)[/mm] in den
> > Raum.
>  >  
> > Huebsch :)
>  >  
> > >  Zu a) und b) kann man eine beliebige Funktion

> > > [mm]f_0:[1,2)\to\mathbb{R}[/mm] betrachten.
>  >  >  Dann erfüllt die durch [mm]f(2^k*x)=2^k*f_0(x)[/mm] für
> > > [mm]k\in\mathb{Z}[/mm] und [mm]1\le x<2[/mm] definierte Funktion f die
> > > Bedingung.
>  >  
> > Das versteh ich nicht. Sei o.B.d.A. [mm]k=1[/mm], dann also
> > [mm]f(2x)=2\cdot f_0(x)[/mm]. Dann ist offensichtlich [mm]f(4x)=f(2\cdot 2x)=2\cdot f_0(2x)[/mm].
> > Aber wiese soll das denn gleich [mm]4\cdot f_0 (x)=2f(2x)[/mm] sein?
> > Was uebersehe ich hier?
>  
> Hallo,
>  mit k=2 ist [mm]f(2*2x)=f(4x)=4f_0(x)=2*f(2x)[/mm].
>  Damit passt alles (auch analog für andere
> Zweierpotenzen).

Hmmm, das sehe ich immer noch nicht.... Nehmen wir mal ein konkretes Beispiel: Sei [mm] $f_0:[1,2) \rightarrow \IR, f_0(x)=e^x$. [/mm] Dann (mit $k=2$)

[mm] $f(4x)=4e^x$. [/mm]

Daraus folgt doch aber (fuer festes $k$):

[mm] $f(8x)=f(2\cdot 4x)=4e^{2x} \not=8e^x=2\cdot 4e^2=2f(4x)$. [/mm]




>  
> >  

> > >  f ist genau dann stetig, wenn [mm]f_0[/mm] stetig ist und

> > > [mm]\lim_{x\to 2-0}f_0(x)=2f_0(1)[/mm].
> >  

>  


Bezug
                                        
Bezug
Nichtproportionale Verdoppelun: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Di 12.09.2017
Autor: HJKweseleit

$ [mm] f(2^k\cdot{}x)=2^k\cdot{}f_0(x) [/mm] $

> Hmmm, das sehe ich immer noch nicht.... Nehmen wir mal ein
> konkretes Beispiel: Sei [mm]f_0:[1,2) \rightarrow \IR, f_0(x)=e^x[/mm].
> Dann (mit [mm]k=2[/mm])
>  
> [mm]f(4x)=4e^x[/mm].
>  
> Daraus folgt doch aber (fuer festes [mm]k[/mm]):
>  
> [mm]f(8x)=f(2\cdot 4x)=4e^{2x} \not=8e^x=2\cdot 4e^2=2f(4x)[/mm].
>  
>

Betrachte
[mm] f(8x)=f(2\cdot 4x)=4e^{2x}. [/mm]

Darauf kommst du durch die Zwischenschritte
[mm] f(8x)=f(2\cdot 4x)=f(4\cdot 2x)=f(2^2\cdot 2x)=2^2f(2x)=4e^{2x}. [/mm]
Aber das letzte Gleichheitszeichen ist falsch. Es ist  f(2x)=2*f(x) und damit in der obigen Kette [mm] 2^2f(2x)=2^2*2*f(x)=8e^x, [/mm] aber
nicht f(2x)= [mm] e^{2x}. [/mm]

Grund: Wenn [mm] x\in[1|2[ [/mm] liegt, ist [mm] f(x)=e^x. [/mm]
Für jedes(!) [mm] x\in[1|2[ [/mm] liegt 2x nicht mehr in [1|2[ und erfüllt damit nicht mehr die Funktionsgleichung f(2x)= [mm] e^{2x}. [/mm]

Du musst dir die Funktion nun als abschnittsweise definiert vorstellen:

[mm] f(x)=e^x [/mm] für [mm] 1\le [/mm] x < 2
[mm] f(x)=2*e^{x/2} [/mm] für [mm] 2\le [/mm] x < 4
[mm] f(x)=4*e^{x/4} [/mm] für [mm] 4\le [/mm] x < 8
[mm] f(x)=8*e^{x/8} [/mm] für [mm] 8\le [/mm] x < 16
...
[mm] f(x)=e^{2x}/2 [/mm] für [mm] 1/2\le [/mm] x < 1
[mm] f(x)=e^{4x}/4 [/mm] für [mm] 1/4\le [/mm] x < 1/2
[mm] f(x)=e^{8x}/8 [/mm] für [mm] 1/8\le [/mm] x < 1/4
...

Jetzt landet jeder Exponent im Intervall [1|2[.
Verdoppelst du irgendeinen x-Wert, landest du automatisch im nächsten Intervall, z.B.

f(3,7)=(2. von oben) [mm] 2*e^{3,7/2}=2*e^{1,85} [/mm]
f(2*3,7)=f(7,4)=(3. von oben) [mm] 4*e^{7,4/4}=4*e^{1,85}=2*f(3,7). [/mm]

Bezug
                                                
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Di 12.09.2017
Autor: Chris84

Huhu,
so langsam daemmert es mir :)


> [mm]f(2^k\cdot{}x)=2^k\cdot{}f_0(x)[/mm]
>  
> > Hmmm, das sehe ich immer noch nicht.... Nehmen wir mal ein
> > konkretes Beispiel: Sei [mm]f_0:[1,2) \rightarrow \IR, f_0(x)=e^x[/mm].
> > Dann (mit [mm]k=2[/mm])
>  >  
> > [mm]f(4x)=4e^x[/mm].
>  >  
> > Daraus folgt doch aber (fuer festes [mm]k[/mm]):
>  >  
> > [mm]f(8x)=f(2\cdot 4x)=4e^{2x} \not=8e^x=2\cdot 4e^2=2f(4x)[/mm].
>  
> >  

> >
> Betrachte
>  [mm]f(8x)=f(2\cdot 4x)=4e^{2x}.[/mm]
>  
> Darauf kommst du durch die Zwischenschritte
>  [mm]f(8x)=f(2\cdot 4x)=f(4\cdot 2x)=f(2^2\cdot 2x)=2^2f(2x)=4e^{2x}.[/mm]

Muss hier an vorletzter Stelle nicht [mm] $2^2 f_0(2x)$ [/mm] stehen?

>  
> Aber das letzte Gleichheitszeichen ist falsch. Es ist  
> f(2x)=2*f(x) und damit in der obigen Kette
> [mm]2^2f(2x)=2^2*2*f(x)=8e^x,[/mm] aber
> nicht f(2x)= [mm]e^{2x}.[/mm]
>  
> Grund: Wenn [mm]x\in[1|2[[/mm] liegt, ist [mm]f(x)=e^x.[/mm]
>  Für jedes(!) [mm]x\in[1|2[[/mm] liegt 2x nicht mehr in [1|2[ und

Seh ich ein!

> erfüllt damit nicht mehr die Funktionsgleichung f(2x)=
> [mm]e^{2x}.[/mm]
>  
> Du musst dir die Funktion nun als abschnittsweise definiert
> vorstellen:
>  
> [mm]f(x)=e^x[/mm] für [mm]1\le[/mm] x < 2
>  [mm]f(x)=2*e^{x/2}[/mm] für [mm]2\le[/mm] x < 4
>  [mm]f(x)=4*e^{x/4}[/mm] für [mm]4\le[/mm] x < 8
>  [mm]f(x)=8*e^{x/8}[/mm] für [mm]8\le[/mm] x < 16
>  ...
>  [mm]f(x)=e^{2x}/2[/mm] für [mm]1/2\le[/mm] x < 1
>  [mm]f(x)=e^{4x}/4[/mm] für [mm]1/4\le[/mm] x < 1/2
>  [mm]f(x)=e^{8x}/8[/mm] für [mm]1/8\le[/mm] x < 1/4
>  ...
>  
> Jetzt landet jeder Exponent im Intervall [1|2[.
>  Verdoppelst du irgendeinen x-Wert, landest du automatisch
> im nächsten Intervall, z.B.
>  
> f(3,7)=(2. von oben) [mm]2*e^{3,7/2}=2*e^{1,85}[/mm]
>  f(2*3,7)=f(7,4)=(3. von oben)
> [mm]4*e^{7,4/4}=4*e^{1,85}=2*f(3,7).[/mm]  

Ja ok... Ich hatte es so verstanden, dass $k$ fix ist und die Behauptung fuer jedes $k$ gilt. Tatsaechlich haengt das zu betrachtende Intervall von $k$ ab (oder?). Das war so nicht offensichtlich.... Aber ich denke, ich weiss nun, was gemeint ist.
Danke!

Gruss,
Chris

Bezug
                                                        
Bezug
Nichtproportionale Verdoppelun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Di 12.09.2017
Autor: HJKweseleit


> Huhu,
>  so langsam daemmert es mir :)
>  
>
> > [mm]f(2^k\cdot{}x)=2^k\cdot{}f_0(x)[/mm]
>  >  
> > > Hmmm, das sehe ich immer noch nicht.... Nehmen wir mal ein
> > > konkretes Beispiel: Sei [mm]f_0:[1,2) \rightarrow \IR, f_0(x)=e^x[/mm].
> > > Dann (mit [mm]k=2[/mm])
>  >  >  
> > > [mm]f(4x)=4e^x[/mm].
>  >  >  
> > > Daraus folgt doch aber (fuer festes [mm]k[/mm]):
>  >  >  
> > > [mm]f(8x)=f(2\cdot 4x)=4e^{2x} \not=8e^x=2\cdot 4e^2=2f(4x)[/mm].
>  
> >  

> > >  

> > >
> > Betrachte
>  >  [mm]f(8x)=f(2\cdot 4x)=4e^{2x}.[/mm]
>  >  
> > Darauf kommst du durch die Zwischenschritte
>  >  [mm]f(8x)=f(2\cdot 4x)=f(4\cdot 2x)=f(2^2\cdot 2x)=2^2f(2x)=4e^{2x}.[/mm]
>  
> Muss hier an vorletzter Stelle nicht [mm]2^2 f_0(2x)[/mm] stehen?

Ja, aber in diesem Intervall stimmen ja f und [mm] f_0 [/mm] überein.

>  
> >  

> > Aber das letzte Gleichheitszeichen ist falsch. Es ist  
> > f(2x)=2*f(x) und damit in der obigen Kette
> > [mm]2^2f(2x)=2^2*2*f(x)=8e^x,[/mm] aber
> > nicht f(2x)= [mm]e^{2x}.[/mm]
>  >  
> > Grund: Wenn [mm]x\in[1|2[[/mm] liegt, ist [mm]f(x)=e^x.[/mm]
>  >  Für jedes(!) [mm]x\in[1|2[[/mm] liegt 2x nicht mehr in [1|2[
> und
>
> Seh ich ein!
>  
> > erfüllt damit nicht mehr die Funktionsgleichung f(2x)=
> > [mm]e^{2x}.[/mm]
>  >  
> > Du musst dir die Funktion nun als abschnittsweise definiert
> > vorstellen:
>  >  
> > [mm]f(x)=e^x[/mm] für [mm]1\le[/mm] x < 2
>  >  [mm]f(x)=2*e^{x/2}[/mm] für [mm]2\le[/mm] x < 4
>  >  [mm]f(x)=4*e^{x/4}[/mm] für [mm]4\le[/mm] x < 8
>  >  [mm]f(x)=8*e^{x/8}[/mm] für [mm]8\le[/mm] x < 16
>  >  ...
>  >  [mm]f(x)=e^{2x}/2[/mm] für [mm]1/2\le[/mm] x < 1
>  >  [mm]f(x)=e^{4x}/4[/mm] für [mm]1/4\le[/mm] x < 1/2
>  >  [mm]f(x)=e^{8x}/8[/mm] für [mm]1/8\le[/mm] x < 1/4
>  >  ...
>  >  
> > Jetzt landet jeder Exponent im Intervall [1|2[.
>  >  Verdoppelst du irgendeinen x-Wert, landest du
> automatisch
> > im nächsten Intervall, z.B.
>  >  
> > f(3,7)=(2. von oben) [mm]2*e^{3,7/2}=2*e^{1,85}[/mm]
>  >  f(2*3,7)=f(7,4)=(3. von oben)
> > [mm]4*e^{7,4/4}=4*e^{1,85}=2*f(3,7).[/mm]  
>
> Ja ok... Ich hatte es so verstanden, dass [mm]k[/mm] fix ist und die
> Behauptung fuer jedes [mm]k[/mm] gilt. Tatsaechlich haengt das zu
> betrachtende Intervall von [mm]k[/mm] ab (oder?). Das war so nicht
> offensichtlich.... Aber ich denke, ich weiss nun, was
> gemeint ist.
>  Danke!

Wenn für alle k gilt: f(kx)=k*f(x), gibt es für f nur die Möglichkeit f(x)=a*x (Graph = Ursprungsgerade). Genau das wollte ich ja nicht haben.


>  
> Gruss,
>  Chris


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]