matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikProof by Resolution
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Logik" - Proof by Resolution
Proof by Resolution < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Proof by Resolution: Frage und Verständnis
Status: (Frage) überfällig Status 
Datum: 12:28 Do 12.09.2019
Autor: Spalding

Aufgabe
Assume [mm] (\neg [/mm] X [mm] \wedge \neg [/mm] Y). Use the following CNF and the proof by resolution to prove C.

(X [mm] \vee \neg [/mm] Y [mm] \vee \neg [/mm] Z) [mm] \wedge [/mm] (X [mm] \vee [/mm] Y [mm] \vee [/mm] Z) [mm] \wedge (\neg [/mm] X [mm] \vee \neg [/mm] Y) [mm] \wedge (\neg [/mm] X [mm] \vee \neg [/mm] Y [mm] \vee \neg [/mm] Z)

Hallo Community,

obige Aufgabe gibt es zu lösen. Zunächst eine Frage zum Verständnis von Proof by Resolution.
Hierzu zählt unter anderem die AND-Elimination und Modus Ponens.
Aber auch das Überführen in die CNF etc. Verstehe ich das richtig, wenn also nach einem "Proof by Resolution" gefragt wird,
dass ich im Prinzip umforme, vereinfache und verschiedene Regeln in einander einsetzen soll?

Nun zu obiger Aufgabe:
aus [mm] (\neg [/mm] X [mm] \wedge \neg [/mm] Y) zusammen mit der AND-Elimination würde sofort [mm] \neg [/mm] X = TRUE und [mm] \neg [/mm] Y = TRUE folgen, soweit richtig?

Wenn ich das alles - unter Berücksichtigung das X = FALSE und Y = FALSE ist - in die obige CNF einsetze bleibt nur noch ein Z übrig.
Bin ich dann schon fertig? Dann müsste ich ja von vorneherein davon ausgehen, dass die gesamte CNF = TRUE ist?


Einen schönen Tag

        
Bezug
Proof by Resolution: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 15.09.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Proof by Resolution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 So 15.09.2019
Autor: meili

Hallo Spalding,

> Assume [mm](\neg[/mm] X [mm]\wedge \neg[/mm] Y). Use the following CNF and
> the proof by resolution to prove C.
>  
> (X [mm]\vee \neg[/mm] Y [mm]\vee \neg[/mm] Z) [mm]\wedge[/mm] (X [mm]\vee[/mm] Y [mm]\vee[/mm] Z) [mm]\wedge (\neg[/mm]
> X [mm]\vee \neg[/mm] Y) [mm]\wedge (\neg[/mm] X [mm]\vee \neg[/mm] Y [mm]\vee \neg[/mm] Z)

für mich geht aus der Aufgabe nicht hervor, was C ist und bewiesen werden soll.

>  Hallo Community,
>
> obige Aufgabe gibt es zu lösen. Zunächst eine Frage zum
> Verständnis von Proof by Resolution.
> Hierzu zählt unter anderem die AND-Elimination und Modus
> Ponens.
> Aber auch das Überführen in die CNF etc. Verstehe ich das
> richtig, wenn also nach einem "Proof by Resolution" gefragt
> wird,
> dass ich im Prinzip umforme, vereinfache und verschiedene
> Regeln in einander einsetzen soll?

Ja, das Überführen in CNF ist der erste Schritte, da CNF die Voraussetzung
für einen Beweis mit Resolutionsverfahren ist.
Zu den einzelnen Schritten siehe []Resolutionsverfahren

>  
> Nun zu obiger Aufgabe:
>  aus [mm](\neg[/mm] X [mm]\wedge \neg[/mm] Y) zusammen mit der
> AND-Elimination würde sofort [mm]\neg[/mm] X = TRUE und [mm]\neg[/mm] Y =
> TRUE folgen, soweit richtig?
>  
> Wenn ich das alles - unter Berücksichtigung das X = FALSE
> und Y = FALSE ist - in die obige CNF einsetze bleibt nur
> noch ein Z übrig.
> Bin ich dann schon fertig? Dann müsste ich ja von
> vorneherein davon ausgehen, dass die gesamte CNF = TRUE
> ist?

Leider weis ich nicht, ob das so richtig ist und so gemeint war.

>
>
> Einen schönen Tag

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]