matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemannintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Riemannintegral
Riemannintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemannintegral: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 29.04.2014
Autor: Ymaoh

Aufgabe
Begründen Sie, dass folgende Funktionen auf ihrem Def. Bereich Riemann-Integrierbar sind und bestimmen Sie den Wert des Integrals mit Riemannschen Summen.

[mm] f:[0,1]\to\IR:f(x)=\begin{cases}\bruch{1}{2^{i(x)}}, & \mbox{für } x \not=1\mbox{ } \\ 0, & \mbox{für } x=1 \mbox{ } \end{cases} [/mm]

[mm] \bruch{1}{2^{i(x)}} [/mm] fuer x [mm] \not= [/mm] 1
0 für x = 1
(Ich weiß nicht, wieso das oben nicht funktioniert o.o )


Wo i(x)= max{n [mm] \in [/mm] N | x [mm] \ge 1-\bruch{1}{2^n}} [/mm] für x [mm] \in [/mm] [0,1[




Ich denke, die Funktion ist integrierbar, denn 1/(2^(i(x))) geht ja gegen Null,
dass heißt die Funktion ist beschränkt.
Ich weiß aber nicht, wie ich bei der Riemannsumme hier vorgehen soll, weil in der eigentlichen Funktion ja eine zweite steckt....?

        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Di 29.04.2014
Autor: Leopold_Gast

Ich finde die Funktionsvorschrift unnötig kompliziert aufgeschrieben.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Riemannintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 30.04.2014
Autor: Ymaoh

Das stimmt, deswegen weiß ich ja auch nicht, wie ich hier die Riemann-Summen bilden soll....   o.o
Das Bild hilft mir da leider auch nicht weiter, skizziert hab ich mir die Funktion ja schon...

Bezug
                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Mi 30.04.2014
Autor: fred97


> Das stimmt, deswegen weiß ich ja auch nicht, wie ich hier
> die Riemann-Summen bilden soll....   o.o
>  Das Bild hilft mir da leider auch nicht weiter, skizziert
> hab ich mir die Funktion ja schon...


Ohne Riemannsummen: monotone Funktionen sind Riemann-integrierbar

FRED

Bezug
                                
Bezug
Riemannintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 30.04.2014
Autor: Ymaoh

Ja, aber ich soll ja die Riemann Summe dazu berechnen....  

Bezug
                                        
Bezug
Riemannintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Do 01.05.2014
Autor: Ymaoh

Niemand eine Idee?

Bezug
                                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Fr 02.05.2014
Autor: Leopold_Gast

Berechne die Fläche unter dem Graphen. Das sind ja lauter Rechtecke. Und das Ganze läuft auf eine geometrische Reihe hinaus.

Bezug
                                                
Bezug
Riemannintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 03.05.2014
Autor: Ymaoh

Die Riemannsumme selbst hab ich jetzt.
Allerdings ist mir aufgefallen, dass Beschränktheit allein natürlich nicht reicht, um Riemannintegrierbarkeit zu beweisen. Die Funktion hat ja unendlich viele Unstetigkeitsstellen. Das heißt, ich muss zeigen, das es abzählbar viele sind.
Die Stellen liegen ja genau bei:

[mm] 1-\bruch{1}{2^n} [/mm]

Ich muss also zeigen, dass es von dieser Menge eine Bijektion auf die natürlichen Zahlen gibt. Aber wie gehe ich da genau vor?

Bezug
                                                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Sa 03.05.2014
Autor: fred97


> Die Riemannsumme selbst hab ich jetzt.
>  Allerdings ist mir aufgefallen, dass Beschränktheit
> allein natürlich nicht reicht, um Riemannintegrierbarkeit
> zu beweisen.

Ich hab doch gesagt: monotone Funktionen sind integrierbar.

FRED



> Die Funktion hat ja unendlich viele
> Unstetigkeitsstellen. Das heißt, ich muss zeigen, das es
> abzählbar viele sind.
>  Die Stellen liegen ja genau bei:
>  
> [mm]1-\bruch{1}{2^n}[/mm]
>  
> Ich muss also zeigen, dass es von dieser Menge eine
> Bijektion auf die natürlichen Zahlen gibt. Aber wie gehe
> ich da genau vor?


Bezug
                                                                
Bezug
Riemannintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 03.05.2014
Autor: Ymaoh

Und das gilt uneingeschränkt, trotz der unendlichen Unstetigkeitsstellen?



Bezug
                                                                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Sa 03.05.2014
Autor: fred97


> Und das gilt uneingeschränkt, trotz der unendlichen
> Unstetigkeitsstellen?

Ja ! Monotone Funktionen sind Riemannintegrierbar. Glaubs mir, ich bins der

FRED

>  
>  


Bezug
                                                                                
Bezug
Riemannintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 So 04.05.2014
Autor: Ymaoh

Ja, ich glaube ;)
Trotzdem habe ich eine weitere Frage zu dieser Aufgabe, ich hab nämlich ein falsches Ergebnis. Ich weiß auch woran es liegt, aber nicht genau, wie ich das richtige bekomme:

[mm] \summe_{n=0}^{\infty}(\bruch{1}{2})^{2n+1} [/mm]

ist die endgültige Summe, die sollte stimmen. Das Ergebnis soll laut Tutor sein: 2/3.
Ich hatte 2 raus, weil ich einfach die Formel für die geometrische Reihe benutzt habe. Allerdings ist das hier ja gar nicht die geometrische Reihe, weil nur die ungeraden Exponenten vorkommen. Allerdings weiß ich nicht, wie ich jetzt auf den richtigen Wert komme....
Kann man eine Partialbruchzerlegung machen, auch wenn es keine Nullstellen gibt?

Bezug
                                                                                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 So 04.05.2014
Autor: fred97


> Ja, ich glaube ;)
>  Trotzdem habe ich eine weitere Frage zu dieser Aufgabe,
> ich hab nämlich ein falsches Ergebnis. Ich weiß auch
> woran es liegt, aber nicht genau, wie ich das richtige
> bekomme:
>  
> [mm]\summe_{n=0}^{\infty}(\bruch{1}{2})^{2n+1}[/mm]
>  
> ist die endgültige Summe, die sollte stimmen. Das Ergebnis
> soll laut Tutor sein: 2/3.
>  Ich hatte 2 raus, weil ich einfach die Formel für die
> geometrische Reihe benutzt habe. Allerdings ist das hier ja
> gar nicht die geometrische Reihe, weil nur die ungeraden
> Exponenten vorkommen. Allerdings weiß ich nicht, wie ich
> jetzt auf den richtigen Wert komme....
>  Kann man eine Partialbruchzerlegung machen, auch wenn es
> keine Nullstellen gibt?


[mm]\summe_{n=0}^{\infty}(\bruch{1}{2})^{2n+1}[/mm]= [mm] \bruch{1}{2}\summe_{n=0}^{\infty}(\bruch{1}{4})^n [/mm]

Jetzt Du.

FRED


Bezug
                                                                                                
Bezug
Riemannintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 04.05.2014
Autor: Ymaoh

Jetzt ist das ja eine geometrische Reihe, und mit

[mm] \bruch{a_0}{1-q} [/mm] kommt für die Summe
[mm] \bruch{4}{3}, [/mm] also insgesamt [mm] \bruch{2}{3} [/mm] raus.

Aber ich verstehe deinen Schritt nicht, was hast du da gemacht, und wie?

Bezug
                                                                                                        
Bezug
Riemannintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 So 04.05.2014
Autor: DieAcht

Hallo Ymaoh,


> Jetzt ist das ja eine geometrische Reihe, und mit
>  
> [mm]\bruch{a_0}{1-q}[/mm] kommt für die Summe
>  [mm]\bruch{4}{3},[/mm] also insgesamt [mm]\bruch{2}{3}[/mm] raus.

Ja.

> Aber ich verstehe deinen Schritt nicht, was hast du da
> gemacht, und wie?

Potenzgesetze! Es gilt (kurz):

      [mm] a^{l+r}=a^l*a^r [/mm]

und

      [mm] (a^l)^r=a^{l*r}. [/mm]


Gruß
DieAcht

Bezug
                                                                                                                
Bezug
Riemannintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 So 04.05.2014
Autor: Ymaoh

Oh man, Potenzgesetze....  o.o  :)
Die sollte man wohl im Kopf haben, eigentlich :)

vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]