matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSatz von Morera
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Satz von Morera
Satz von Morera < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Morera: Lemma von Goursat
Status: (Frage) für Interessierte Status 
Datum: 21:05 Mi 30.11.2005
Autor: kunzm

Hallo mal wieder,

ich möchte den (verallgemeinerten) Satz von Morera beweisen.

[mm] \textbf{H2} Verallgemeinerter Satz von Morera\\[12pt] \textit{Es sei $U \subseteq \mathbb{C}$ offen und $f:U \rightarrow \mathbb{C}$ stetig. Für jedes in U enthaltene abgeschlossene Dreieck $\Delta$ gelte $\int _{\partial \Delta}f(z) dz=0$. Dann ist f holomorph auf U.} [/mm]

Im prinzip möchte ich wie im Beweis des Cauchyschen Integralsatzes zeigen, dass es eine Stammfunktion F von f gibt, und anschließend über den Entwicklungssatz, der ja unter anderem sagt: ist eine Funktion auf einem Gebiet einmal kmplx diffbar ist sie unendlich oft kmplx diffbar.

Ich habe nur Schwierigkeiten den Beweis des Cauchyschen Integralsatzes (mittels lemma von Goursat) nachzuvollziehen. Wie also kann ich unter den gegebenen Voraussetzungen zeigen, das F Stammfunktion von f ist?
Hier, was ich mir bis jetzt zusammenbasteln konnte:

[mm] Sei jetzt $\epsilon > 0$ und $U_{\epsilon}(z_{0})\subseteq U$. Dann ist $U_{\epsilon}(z_{0})$ ein Sterngebiet mit Zentrum $z_{0}$ und\\ \bc $F:U_{\epsilon}(z_{0})\rightarrow \mathbb{C}$, $F(z):= \int_{[z_{0},z]} f(\xi) d\xi$\\ [/mm]

und wenn ich gezeigt habe das F Stammfunktion der Einschränkung ist würde ich so zu Ende argumentieren:

[mm] \textbf{Satz 2.15 }(Roch) Entwicklungssatz\\ \textit{Sei U offen und sei $U_{\epsilon}(z_{0})$ die grösste offene Kreisscheibe um $z_{0}$ in U. Dann ist jede in U holomorphe Funktion f um $z_{0}$ in einer Potenzreihe entwickelbar die auf $U_{\epsilon}(z_{0})$ gegen f konvergiert. [...] Insbesondere ist f in U unendlich oft komplex differenzierbar [..] und es gelten die Cauchyschen Integralformeln. Anmerkung: Funktionen die auf einer offenen Menge einmal komplex differenzierbar sind sind bereits unendlich oft komplex differenzierbar.}\\[12pt] $\Rightarrow$ Es ist $F'=f|_{U_{\epsilon}(z_{0})}$ auf $U_{\epsilon}(z_{0})$ (und somit $f$ in $z_{0}$) komplex differenzierbar was zu beweisen war.\\ [/mm]

Danke, Martin

        
Bezug
Satz von Morera: hat sich erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Do 01.12.2005
Autor: kunzm

Meine Frage hat sich geklärt, und könnte entfernt werden.
Danke Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]