matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSpule  DGL 1. Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Spule DGL 1. Ordnung
Spule DGL 1. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spule DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Do 28.02.2019
Autor: hase-hh

Aufgabe
Bestimmen Sie die allgemeine Lösung der DGL für die Stromstärke in einer Spule, für den Anfangswert I(0) = 0.

Es gilt:

[mm] U_{ind} [/mm] = -L * [mm] \bruch{d I(t)}{dt} [/mm]


I(t) = [mm] \bruch{U + U_{ind}}{R} [/mm]

Moin Moin,

meine Frage ist, wie ich hier am einfachsten die Lösung der DGL finden kann.


I(t) = [mm] \bruch{U + U_{ind}}{R} [/mm]

I(t) = [mm] \bruch{U}{R} -\bruch{L}{R}* \bruch{d I(t)}{dt} [/mm]


I(t) = [mm] \bruch{U}{R} -\bruch{L}{R}* [/mm]  I ' (t)


Richtig?


1. Idee

Wenn I(0) = 0  der Anfangswert ist, dann folgt daraus


0 = [mm] \bruch{U}{R} -\bruch{L*}{R}* [/mm] I ' (0)


I ' (0) =  [mm] \bruch{U}{L} [/mm]


Richtig?


2.  Idee   zur Lösung der DGL

I(t) = [mm] \bruch{U}{R} -\bruch{L}{R}* [/mm]  I ' (t)

I(t)  + [mm] \bruch{L}{R}* [/mm]  I ' (t) = [mm] \bruch{U}{R} [/mm]

2.1.  Lösen der homogenen DGL

I(t)  + [mm] \bruch{L}{R}* [/mm]  I ' (t) = 0

I(t) = [mm] c*e^{at} [/mm]    =>  I ' (t) = [mm] a*c*e^{at} [/mm]


c = [mm] \bruch{U}{L} [/mm]   s.o.


c*e{at} = [mm] -\bruch{L}{R}*a*c*e^{at} [/mm]


1 = [mm] -\bruch{L}{R}*a [/mm]

a = - [mm] \bruch{R}{L} [/mm]


=  >  I(t) = [mm] \bruch{U}{R} [/mm] - [mm] \bruch{U}{L}*\bruch{-R}{L}*e^{-\bruch{R}{L}*t} [/mm]


Ist das soweit richtig? Oder muss ich da anders vorgehen?

... und wie komme ich dann zur speziellen Lösung?


Vielen Dank für eure Hilfe!


        
Bezug
Spule DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 28.02.2019
Autor: HJKweseleit


> Bestimmen Sie die allgemeine Lösung der DGL für die
> Stromstärke in einer Spule, für den Anfangswert I(0) =
> 0.
>  
> Es gilt:
>
> [mm]U_{ind}[/mm] = -L * [mm]\bruch{d I(t)}{dt}[/mm]
>  
>
> I(t) = [mm]\bruch{U + U_{ind}}{R}[/mm]
>  Moin Moin,
>  
> meine Frage ist, wie ich hier am einfachsten die Lösung
> der DGL finden kann.
>  
>
> I(t) = [mm]\bruch{U + U_{ind}}{R}[/mm]
>  
> I(t) = [mm]\bruch{U}{R} -\bruch{L}{R}* \bruch{d I(t)}{dt}[/mm]
>  
>
> I(t) = [mm]\bruch{U}{R} -\bruch{L}{R}*[/mm]  I ' (t)
>  
>
> Richtig?   [ok]
>  
>
> 1. Idee
>
> Wenn I(0) = 0  der Anfangswert ist, dann folgt daraus
>
>
> 0 = [mm]\bruch{U}{R} -\bruch{L*}{R}*[/mm] I ' (0)
>  
>
> I ' (0) =  [mm]\bruch{U}{L}[/mm]
>
>
> Richtig?    [ok] - Du solltest aber besser die Randbedingung zuletzt einsetzen, nachdem du die Diffgl. gelöst hast.
>
>
> 2.  Idee   zur Lösung der DGL
>  
> I(t) = [mm]\bruch{U}{R} -\bruch{L}{R}*[/mm]  I ' (t)
>  
> I(t)  + [mm]\bruch{L}{R}*[/mm]  I ' (t) = [mm]\bruch{U}{R}[/mm]
>  
> 2.1.  Lösen der homogenen DGL
>  
> I(t)  + [mm]\bruch{L}{R}*[/mm]  I ' (t) = 0
>  
> I(t) = [mm]c*e^{at}[/mm]    =>  I ' (t) = [mm]a*c*e^{at}[/mm]

>
>
> c = [mm]\bruch{U}{L}[/mm]   s.o. [notok]   [mm] \red{a}*c [/mm] = [mm] \bruch{U}{L} [/mm]
>
>
> c*e{at} = [mm]-\bruch{L}{R}*a*c*e^{at}[/mm]   [ok]
>
>
> 1 = [mm]-\bruch{L}{R}*a[/mm]
>  
> a = - [mm]\bruch{R}{L}[/mm] [ok]
>  
>

----------------- ab hier schlägt der Fehler durch --------


> =  >  I(t) = [mm]\bruch{U}{R}[/mm] -

> [mm]\bruch{U}{L}*\bruch{-R}{L}*e^{-\bruch{R}{L}*t}[/mm]
>  
>

----------------------------------------------------------

> Ist das soweit richtig? Oder muss ich da anders vorgehen?
>  
> ... und wie komme ich dann zur speziellen Lösung?
>
>

Bis auf den Fehler ist es bis zu "ab hier schlägt der Fehler durch" richtig. Ich zeige dir mal den eleganteren Weg:

Den 1. Weg lasse ich zunächst weg.

Du hattest beim 2. Weg

I(t)  + [mm]\bruch{L}{R}*[/mm]  I ' (t) = [mm]\bruch{U}{R}[/mm]

Homogene Gleichung: I(t)  + [mm]\bruch{L}{R}*[/mm]  I ' (t) = 0

Ansatz: [mm] I(t)=c*e^{at} [/mm]

Einsetzen in die  homogene Gleichung: [mm] c*e^{at}+\bruch{L}{R}*a*c*e^{at}=0 [/mm]
Daraus folgt  [mm] a=-\bruch{R}{L} [/mm] wie bei dir oben.

Für die inhomogene Gleichung findest du sofort eine spezielle Lösung: Da die rechte Seite eine Konstante ist, kannst du einfach mal ausprobieren, ob I(t) nicht auch konstant sein könnte. Dann wäre I'(t)=0 und [mm] I(t)=\bruch{U}{R}. [/mm] Also ist das eine spezielle Lösung. Diese hinzuaddiert gibt nun

[mm] I(t)=c*e^{-\bruch{R}{L}t}+\bruch{U}{R} [/mm]

Jetzt erst setzt du die Randbedingung I(0)=0 ein:

[mm] I(0)=c+\bruch{U}{R}=0 \Rightarrow c=-\bruch{U}{R} [/mm] und damit

[mm] I(t)=\bruch{U}{R}*(1-e^{-\bruch{R}{L}t}) [/mm]





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]