matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:45 Mi 27.08.2014
Autor: Babybel73

Hallo zusammen

Habe so meine Probleme mit der Stetigkeit.

Nun sollte ich folgende Aufgabe lösen:
Aufgabe
Die Funktion f: [mm] \IR^2 \to \IR [/mm] sei definiert durch
[mm] f(s,y)=\begin{cases} (x^2+y^2)*sin(\bruch{1}{\wurzel{x^2+y^2}}), & \mbox{für } (x,y)\not= (0,0) \mbox \\ 0, & \mbox{für } (x,y)=(0,0) \mbox {} \end{cases} [/mm]
1) Zeigen Sie, dass f überall partiell differenzierbar ist und berechnen Sie die partiellen Ableitungen.
2) Ist f stetig partiell differenzierbar?



Nun zu meiner Lösung:
Für (x,y) [mm] \not= [/mm] (0,0)
[mm] \bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}} [/mm]
[mm] \bruch{\partial f}{\partial y}(x,y)=2y*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{y}{(x^2+y^2)^{3/2}} [/mm]

Da sin & cos stetig [mm] \Rightarrow [/mm]  Komposition stetiger Funktionen, somit ist für (x,y) [mm] \not= [/mm] (0,0) [mm] \bruch{\partial f}{\partial x} [/mm] & [mm] \bruch{\partial f}{\partial y} [/mm] stetig.

Für (x,y)=(0,0)
partiell diffbar:
[mm] \bruch{\partial f}{\partial x}(0,0)=\limes_{t\rightarrow\0} \bruch{f((0,0)+(t,0))-f(0,0)}{t}=\limes_{t\rightarrow\0} \bruch{t^2*sin(\bruch{1}{t})}{t}=\limes_{t\rightarrow\0} t*sin(\bruch{1}{t})=0 [/mm]
Analog: [mm] \bruch{\partial f}{\partial x}(0,0) [/mm]
[mm] \Rightarrow [/mm] Partielle Ableitungen in (0,0) ex.

Wie kann ich jetzt zeigen, dass die partiellen Ableitungen in (0,0) stetig sind?



        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 27.08.2014
Autor: fred97


> Hallo zusammen
>  
> Habe so meine Probleme mit der Stetigkeit.
>
> Nun sollte ich folgende Aufgabe lösen:
> Die Funktion f: [mm]\IR^2 \to \IR[/mm] sei definiert durch
> [mm]f(s,y)=\begin{cases} (x^2+y^2)*sin(\bruch{1}{\wurzel{x^2+y^2}}), & \mbox{für } (x,y)\not= (0,0) \mbox \\ 0, & \mbox{für } (x,y)=(0,0) \mbox {} \end{cases}[/mm]
>  
> 1) ZEigen Sie, dass f überall partiell differenzierbar ist
> und berechnen Sie die partiellen Ableitungen.
>  2) Ist f stetig partiell differenzierbar?
>
> Nun zu meiner Lösung:
> Für (x,y) [mm]\not=[/mm] (0,0)
>  [mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}[/mm]
>  
> [mm]\bruch{\partial f}{\partial y}(x,y)=2y*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{y}{(x^2+y^2)^{3/2}}[/mm]
>  
> Da sin & cos stetig [mm]\Rightarrow[/mm]  Komposition stetiger
> Funktionen, somit ist für (x,y) [mm]\not=[/mm] (0,0)
> [mm]\bruch{\partial f}{\partial x}[/mm] & [mm]\bruch{\partial f}{\partial y}[/mm]
> stetig.
>
> Für (x,y)=(0,0)
>  partiell diffbar:
>  [mm]\bruch{\partial f}{\partial x}(0,0)=\limes_{t\rightarrow\0} \bruch{f((0,0)+(t,0))-f(0,0)}{t}=\limes_{t\rightarrow\0} \bruch{t^2*sin(\bruch{1}{t})}{t}=\limes_{t\rightarrow\0} t*sin(\bruch{1}{t})=0[/mm]
>  
> Analog: [mm]\bruch{\partial f}{\partial x}(0,0)[/mm]

Du meinst wohl [mm]\bruch{\partial f}{\partial y}(0,0)=0[/mm]


>  [mm]\Rightarrow[/mm]
> Partielle Ableitungen in (0,0) ex.
>
> Wie kann ich jetzt zeigen, dass die partiellen Ableitungen
> in (0,0) stetig sind?

Gar nicht, denn sie sind in (0,0) nicht stetig.

Finde eine Nullfolge [mm] (x_n) [/mm] mit der Eigenschaft: die Folge

     [mm] (\bruch{\partial f}{\partial x}(x_n,0)) [/mm]

konvergiert nicht gegen 0.

FRED

>  
>  


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Mi 27.08.2014
Autor: Babybel73


> > Hallo zusammen
>  >  
> > Habe so meine Probleme mit der Stetigkeit.
> >
> > Nun sollte ich folgende Aufgabe lösen:
> > Die Funktion f: [mm]\IR^2 \to \IR[/mm] sei definiert durch
> > [mm]f(s,y)=\begin{cases} (x^2+y^2)*sin(\bruch{1}{\wurzel{x^2+y^2}}), & \mbox{für } (x,y)\not= (0,0) \mbox \\ 0, & \mbox{für } (x,y)=(0,0) \mbox {} \end{cases}[/mm]
>  
> >  

> > 1) ZEigen Sie, dass f überall partiell differenzierbar ist
> > und berechnen Sie die partiellen Ableitungen.
>  >  2) Ist f stetig partiell differenzierbar?
> >
> > Nun zu meiner Lösung:
> > Für (x,y) [mm]\not=[/mm] (0,0)
>  >  [mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}[/mm]
>  
> >  

> > [mm]\bruch{\partial f}{\partial y}(x,y)=2y*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{y}{(x^2+y^2)^{3/2}}[/mm]
>  
> >  

> > Da sin & cos stetig [mm]\Rightarrow[/mm]  Komposition stetiger
> > Funktionen, somit ist für (x,y) [mm]\not=[/mm] (0,0)
> > [mm]\bruch{\partial f}{\partial x}[/mm] & [mm]\bruch{\partial f}{\partial y}[/mm]
> > stetig.
> >
> > Für (x,y)=(0,0)
>  >  partiell diffbar:
>  >  [mm]\bruch{\partial f}{\partial x}(0,0)=\limes_{t\rightarrow\0} \bruch{f((0,0)+(t,0))-f(0,0)}{t}=\limes_{t\rightarrow\0} \bruch{t^2*sin(\bruch{1}{t})}{t}=\limes_{t\rightarrow\0} t*sin(\bruch{1}{t})=0[/mm]
>  
> >  

> > Analog: [mm]\bruch{\partial f}{\partial x}(0,0)[/mm]
>  
> Du meinst wohl [mm]\bruch{\partial f}{\partial y}(0,0)=0[/mm]
>  
>
> >  [mm]\Rightarrow[/mm]

> > Partielle Ableitungen in (0,0) ex.
> >
> > Wie kann ich jetzt zeigen, dass die partiellen Ableitungen
> > in (0,0) stetig sind?
>  
> Gar nicht, denn sie sind in (0,0) nicht stetig.
>  
> Finde eine Nullfolge [mm](x_n)[/mm] mit der Eigenschaft: die Folge
>
> [mm](\bruch{\partial f}{\partial x}(x_n,0))[/mm]
>  
> konvergiert nicht gegen 0.
>  
> FRED
>  >  
> >  

>  

Hallo FRED

Also ich nehme in dem Fall mal [mm] x_n=\bruch{1}{n} [/mm]

[mm] \limes_{n\rightarrow\ 0 } \bruch{\partial f}{\partial x}(\bruch{1}{n},0)=\limes_{n\rightarrow\ 0 } \bruch{2}{n} [/mm] * [mm] sin(\bruch{n}{2})-\bruch{4}{8}*cos(\bruch{n}{2}) [/mm] = ...
Wie berechne ich jetzt da den limes?

Habe noch folgendes versucht (weiss aber nicht ob ich dies so machen darf): Ich habe die partielle Ableitung in Polarkoordinaten umgeschrieben:
[mm] \bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}=2*r*cos(\phi)*sin(\bruch{1}{r})-\bruch{r^3*cos(\phi)}{r^3}*cos(\bruch{1}{r}) [/mm]

Nun den Limes für r [mm] \to [/mm] 0
[mm] \limes_{r \rightarrow\ 0 } 2*r*cos(\phi)*sin(\bruch{1}{r})-cos(\phi)*cos(\bruch{1}{r}) [/mm] = [mm] \limes_{r \rightarrow\ 0 } 2*r*cos(\phi)*sin(\bruch{1}{r})- \limes_{r \rightarrow\ 0 } cos(\phi)*cos(\bruch{1}{r}) [/mm] = 0 - [mm] \limes_{r \rightarrow\ 0 } cos(\phi)*cos(\bruch{1}{r}) [/mm]

Da der Grenzwert abhängig ist von [mm] \phi [/mm] ist die parielle Ableitung nach x nicht stetig.




Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 27.08.2014
Autor: schachuzipus

Hallo,

[mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}[/mm]

>

> Hallo FRED

>

> Also ich nehme in dem Fall mal [mm]x_n=\bruch{1}{n}[/mm]

>

> [mm]\limes_{n\rightarrow\ 0 } \bruch{\partial f}{\partial x}(\bruch{1}{n},0)=\limes_{n\rightarrow\ 0 } \bruch{2}{n}[/mm] * [mm]sin(\bruch{n}{2})-\bruch{4}{8}*cos(\bruch{n}{2})[/mm] = ...

Wie kommt das denn zustande?

Da muss doch gem. der ganz oben stehenden partiellen Ableitung nach x dies stehen:

[mm]\lim\limits_{n\to\infty} \ \left[ \ 2\cdot{}\frac{1}{n}\cdot{}\sin\left(\frac{1}{\sqrt{\frac{1}{n^2}}}\right)-\frac{1}{n^2}\cdot{}\cos\left(\frac{1}{\sqrt{\frac{1}{n^2}}}\right)\cdot{}\frac{\frac{1}{n}}{\left(\frac{1}{n^2}\right)^{3/2}}} \ \right][/mm]

Und das ist doch schnell vereinfacht zu

[mm]\lim\limits_{n\to\infty}\left[\frac{2}{n}\cdot{}\sin(n)-\frac{1}{n^2}\cdot{}\cos(n)\cdot{}n^2\right][/mm]

Beachte, dass [mm]\sin[/mm] und [mm]\cos[/mm] beschränkt sind ...

> Wie berechne ich jetzt da den limes?

>

> Habe noch folgendes versucht (weiss aber nicht ob ich dies
> so machen darf): Ich habe die partielle Ableitung in
> Polarkoordinaten umgeschrieben:
> [mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}=2*r*cos(\phi)*sin(\bruch{1}{r})-\bruch{r^3*cos(\phi)}{r^3}*cos(\bruch{1}{r})[/mm]

>

> Nun den Limes für r [mm]\to[/mm] 0
> [mm]\limes_{r \rightarrow\ 0 } 2*r*cos(\phi)*sin(\bruch{1}{r})-cos(\phi)*cos(\bruch{1}{r})[/mm]
> = [mm]\limes_{r \rightarrow\ 0 } 2*r*cos(\phi)*sin(\bruch{1}{r})- \limes_{r \rightarrow\ 0 } cos(\phi)*cos(\bruch{1}{r})[/mm]
> = 0 - [mm]\limes_{r \rightarrow\ 0 } cos(\phi)*cos(\bruch{1}{r})[/mm]

>

> Da der Grenzwert abhängig ist von [mm]\phi[/mm] ist die parielle
> Ableitung nach x nicht stetig.

Die Rechnung habe ich nicht überprüft, aber m.E. kannst du auch so argumentieren. Allerdings spielt doch auch mit ein, dass der GW von [mm]\cos\left(\frac{1}{r}\right)[/mm] für [mm]r\to 0[/mm] nicht existiert, das oszilliert doch immer nur herum wie nicht gescheit ....

Was sich mit der Folgenbetrachtung oben doch auch ergibt ...

Gruß

schachuzipus
>

Bezug
                                
Bezug
Stetigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:33 Mi 27.08.2014
Autor: Babybel73

Hallo schachuzipus

> Hallo,
>  
> [mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}[/mm]
>  
> >
>  > Hallo FRED

>  >
>  > Also ich nehme in dem Fall mal [mm]x_n=\bruch{1}{n}[/mm]

>  >
>  > [mm]\limes_{n\rightarrow\ 0 } \bruch{\partial f}{\partial x}(\bruch{1}{n},0)=\limes_{n\rightarrow\ 0 } \bruch{2}{n}[/mm]

> * [mm]sin(\bruch{n}{2})-\bruch{4}{8}*cos(\bruch{n}{2})[/mm] = ...
>  
> Wie kommt das denn zustande?

Sorry habe mich wohl in der Eile etwas verschrieben.


>  
> Da muss doch gem. der ganz oben stehenden partiellen
> Ableitung nach x dies stehen:
>  
> [mm]\lim\limits_{n\to\infty} \ \left[ \ 2\cdot{}\frac{1}{n}\cdot{}\sin\left(\frac{1}{\sqrt{\frac{1}{n^2}}}\right)-\frac{1}{n^2}\cdot{}\cos\left(\frac{1}{\sqrt{\frac{1}{n^2}}}\right)\cdot{}\frac{\frac{1}{n}}{\left(\frac{1}{n^2}\right)^{3/2}}} \ \right][/mm]
>  
> Und das ist doch schnell vereinfacht zu
>  
> [mm]\lim\limits_{n\to\infty}\left[\frac{2}{n}\cdot{}\sin(n)-\frac{1}{n^2}\cdot{}\cos(n)\cdot{}n^2\right][/mm]
>  
> Beachte, dass [mm]\sin[/mm] und [mm]\cos[/mm] beschränkt sind ...

Ok. Aber kannst du mir noch mal erklären, wieso ich jetzt n [mm] \to \infty [/mm] laufen lassen muss?

Und würde das, was ich über die Polarkoordinaten geschrieben habe, an einer Prüfung ausreichen? Oder muss ich noch etwas anderes zeigen?

>  > [mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}=2*r*cos(\phi)*sin(\bruch{1}{r})-\bruch{r^3*cos(\phi)}{r^3}*cos(\bruch{1}{r})[/mm]

>  
> >
>  > Nun den Limes für r [mm]\to[/mm] 0

>  > [mm]\limes_{r \rightarrow\ 0 } 2*r*cos(\phi)*sin(\bruch{1}{r})-cos(\phi)*cos(\bruch{1}{r})[/mm]

>  
> > = [mm]\limes_{r \rightarrow\ 0 } 2*r*cos(\phi)*sin(\bruch{1}{r})- \limes_{r \rightarrow\ 0 } cos(\phi)*cos(\bruch{1}{r})[/mm]
>  
> > = 0 - [mm]\limes_{r \rightarrow\ 0 } cos(\phi)*cos(\bruch{1}{r})[/mm]
>  
> >
>  > Da der Grenzwert abhängig ist von [mm]\phi[/mm] ist die

> parielle
>  > Ableitung nach x nicht stetig.

>  

Und wenn ich jetzt eine Funktion hätte, die im Nullpunkt stetig ist, dann kann ich ja nicht alle beliebigen Folgen durch probieren.
Ich könnte es ja wieder mit Polarkoordinaten machen, und wenn der Grenzwert = 0 ist (nicht von [mm] \phi [/mm] abhängt), wäre es stetig.
Aber gibt es auch noch einen anderen Weg dies zu zeigen?

Liebe Grüsse
Babybel


Bezug
                                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 27.08.2014
Autor: schachuzipus

Hallo nochmal,

> Hallo schachuzipus

>

> > Hallo,
> >
> > [mm]\bruch{\partial f}{\partial x}(x,y)=2x*sin(\bruch{1}{\wurzel{x^2+y^2}})-(x^2+y^2)*cos(\bruch{1}{\wurzel{x^2+y^2}})*\bruch{x}{(x^2+y^2)^{3/2}}[/mm]

>

> >
> > >
> > > Hallo FRED
> > >
> > > Also ich nehme in dem Fall mal [mm]x_n=\bruch{1}{n}[/mm]
> > >
> > > [mm]\limes_{n\rightarrow\ 0 } \bruch{\partial f}{\partial x}(\bruch{1}{n},0)=\limes_{n\rightarrow\ 0 } \bruch{2}{n}[/mm]
> > * [mm]sin(\bruch{n}{2})-\bruch{4}{8}*cos(\bruch{n}{2})[/mm] = ...
> >
> > Wie kommt das denn zustande?

>

> Sorry habe mich wohl in der Eile etwas verschrieben.

>
>

> >
> > Da muss doch gem. der ganz oben stehenden partiellen
> > Ableitung nach x dies stehen:
> >
> > [mm]\lim\limits_{n\to\infty} \ \left[ \ 2\cdot{}\frac{1}{n}\cdot{}\sin\left(\frac{1}{\sqrt{\frac{1}{n^2}}}\right)-\frac{1}{n^2}\cdot{}\cos\left(\frac{1}{\sqrt{\frac{1}{n^2}}}\right)\cdot{}\frac{\frac{1}{n}}{\left(\frac{1}{n^2}\right)^{3/2}}} \ \right][/mm]

>

> >
> > Und das ist doch schnell vereinfacht zu
> >
> >
> [mm]\lim\limits_{n\to\infty}\left[\frac{2}{n}\cdot{}\sin(n)-\frac{1}{n^2}\cdot{}\cos(n)\cdot{}n^2\right][/mm]
> >
> > Beachte, dass [mm]\sin[/mm] und [mm]\cos[/mm] beschränkt sind ...

>

> Ok. Aber kannst du mir noch mal erklären, wieso ich jetzt
> n [mm]\to \infty[/mm] laufen lassen muss?

Na, das Folgenkriterium der Stetigkeit kennst du doch?

Nennen wir die Funktion der partiellen Ableitung nach x der kürzeren Form halber mal [mm]g(x,y)[/mm]

Dann wäre [mm]g[/mm] stetig in [mm](0,0)[/mm], wenn für jede Folge [mm](x_n,y_n)_{n\in\IN}[/mm] mit [mm]\lim\limits_{n\to\infty}(x_n,y_n)=(0,0)[/mm] auch gilt [mm]g(x_n,y_n)\longrightarrow g(0,0)[/mm] für [mm]n\to\infty[/mm]

Und hier hast du mit [mm](x_n,y_n)_{n\in\IN}=\left(1/n,0\right)_{n\in\IN}[/mm] eine Folge gefunden, die zwar für [mm]n\to\infty[/mm] gegen [mm](0,0)[/mm] konvergiert, wo aber [mm]g(1/n,0)[/mm] nicht konvergiert  ...

Damit kann g in (0,0) nicht stetig sein.

Den zweiten Teil deiner Frage möge jemand anderes beantworten ...

>

> Liebe Grüsse
> Babybel

>

Gruß

schachuzipus

Bezug
                                                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mi 27.08.2014
Autor: Babybel73

Hallo

Leider versteh ich es immer noch nicht wirklich.
Ich habe im Internet nach Beispielen zur Stetigkeit gesucht und auch in Büchern.
Manchmal steht eben:
[mm] \limes_{n\rightarrow\infty} f(x_n,y_n) \not= [/mm] 0
Und manchmal zeigen sie es auch einfach, dass
[mm] \limes_{(x,0)\rightarrow\(0,0)} [/mm] f(x,0) [mm] \not= [/mm] 0
oder
[mm] \limes_{(0,y)\rightarrow\(0,0)} [/mm] f(0,y) [mm] \not= [/mm] 0
oder
[mm] \limes_{(x,x)\rightarrow\(0,0)} [/mm] f(x,x) [mm] \not= [/mm] 0

Wieso ist es nun einmal [mm] \to [/mm] 0 & einmal [mm] \to \infty? [/mm]

Sorry für die blöde Frage, aber ich sehs grad wirklich nicht... :/

Bezug
                                                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Do 28.08.2014
Autor: leduart

Hallo
du lässt x,y  gegen 0 gehen, oder du nimmst eine Nullfolge für [mm] x_n.y_n [/mm] die für n gegen unendlich gegen 0 geht, zB die Folge [mm] (x:n,y_n)=(1/n, 1/n^2) [/mm] dann muss n gegen unendlich.
bis dann, lula

Bezug
                                        
Bezug
Stetigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 29.08.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]