matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesnicht lösbare Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Calculus - Miscellaneous" - nicht lösbare Gleichung
nicht lösbare Gleichung < Calculus - Miscellaneous < Calculus < Grades 11-12 < School < Maths <
View: [ threaded ] | ^ Forum "Analysis-Sonstiges"  | ^^ all forums  | ^ Tree of Forums  | materials

nicht lösbare Gleichung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 08:29 Mo 06/08/2018
Author: rubi

Hallo zusammen,

ich habe folgende Frage:
Sind die beiden folgenden Sätze gleichbedeutend ?
1.) Eine Gleichung ist nicht lösbar.
2.) Eine Gleichung besitzt keine Lösung.

Bisher dachte ich, das wäre so.
Ich habe aber den Hinweis bekommen, dass man unter 1.) (wenn man es kleinlich betrachtet) auch verstehen könnte, dass die Gleichung eine Lösung besitzt, diese man aber nicht mit einer Lösungsformel bestimmen kann (wie z.B. sin(x)=1/x)

Wenn eine Gleichung also keine Lösung besitzt, sollte man dies nur durch den Satz 2.) ausdrücken und nicht durch 1.)

Wie seht ihr das ?

Danke für eure Rückmeldungen.

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
nicht lösbare Gleichung: Antwort
Status: (Answer) finished Status 
Date: 08:46 Mo 06/08/2018
Author: fred97


> Hallo zusammen,
>
> ich habe folgende Frage:
> Sind die beiden folgenden Sätze gleichbedeutend ?
> 1.) Eine Gleichung ist nicht lösbar.
>  2.) Eine Gleichung besitzt keine Lösung.
>
> Bisher dachte ich, das wäre so.
> Ich habe aber den Hinweis bekommen, dass man unter 1.)
> (wenn man es kleinlich betrachtet) auch verstehen könnte,
> dass die Gleichung eine Lösung besitzt, diese man aber
> nicht mit einer Lösungsformel bestimmen kann (wie z.B.
> sin(x)=1/x)
>  
> Wenn eine Gleichung also keine Lösung besitzt, sollte man
> dies nur durch den Satz 2.) ausdrücken und nicht durch
> 1.)
>  
> Wie seht ihr das ?


Für mich sind beide Sätze gleichbedeutend.

In obigem Hinweis sind für meinen Geschmack Formulierungen enthalten, welche mit Mathematik nix zu tun haben, etwa: "kleinlich betrachtet", "verstehen könnte" oder "mit einer Lösungsformel.... "

Setzen wir [mm] $A:=\{x \in \IR: \sin(x)=1/x\}$, [/mm] so ist $A [mm] \ne\emptyset$ [/mm] (warum ?).

Nun definieren wir die FREDsche Funktion F wie folgt:

[mm] $F(x)=\begin{cases} 0, & \mbox{für }x \in A \\ 1, & \mbox{für } x \notin A \end{cases}$. [/mm]

Dann gilt:  [mm] $\sin(x)=1/x \gdw [/mm] F(x)=0$.....

   .... eine schöne Lösungsformel ....

>
> Danke für eure Rückmeldungen.
>
> Viele Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
>  


Bezug
        
Bezug
nicht lösbare Gleichung: Antwort
Status: (Answer) finished Status 
Date: 16:24 Mo 06/08/2018
Author: HJKweseleit


> 1.) Eine Gleichung ist nicht lösbar.
>  2.) Eine Gleichung besitzt keine Lösung.

So sind beide Bedeutungen gleich.

Auch sin(x)=1/x ist lösbar, da es (mindestens) ein [mm] x\in \IR [/mm] gibt, das die Gleichung löst.

Die Gleichung x=x+1 ist nicht lösbar, und sie besitzt keine Löszung.

Auch Gleichungen 5. Grades (Polynom) sind lösbar, sie besitzen mindestens eine Lösung, an die man sich z.B. mit dem Newtonschen Näherungsverfahren annähern kann.

Aber:

sin(x)=1/x oder die allgemeine Gleichung 5. Grades sind nicht nach x AUFlösbar in dem Sinne, dass man die Lösung mit den uns geläufigen Rechenzeichen (Brüche, Wurzeln, Potenzen u.a.) darstellen könnte.

Bezug
View: [ threaded ] | ^ Forum "Analysis-Sonstiges"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 7h 50m 11. tobit09
UTopoGeo/indirekter Beweis
Status vor 8h 32m 13. donp
VK60Ana/Übungsserie 2, Aufgabe 3
Status vor 10h 34m 8. sancho1980
MSons/Abschätzung Kreisfunktionen
Status vor 11h 22m 3. Chris84
Mathematica/Mathematica
Status vor 15h 01m 14. fred97
UAnaRn/Hinreich. Potentialkriterium
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]