matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Flächenbestimmung
Flächenbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 10:08 Sa 06.12.2008
Autor: plutino99

Hallo liebe Forum-Freunde

Leider komme ich bei einer Aufgabe nicht weiter,deshalb bitte ich euch um eure Hilfe:

Aufgabe:

Zwischen dem Graphen der Funktion [mm] f(x)=\bruch{1}{a}x^3+a^2 [/mm] (a>0) und der x-Achse liegt über dem Intervall [0;1] eine Fläche.

a) Fertigen Sie für a=1 eine Skizze an.Berechnen Sie den Inhalt der Fläche a=1.

b)Für welchen Wert von a wird der Inhalt der Fläche minimal?

Liederr weiß ich überhaupt nicht wie ich vorgehen soll.Ich würde mich über eure Hilfe freuen.

Vielen Dank im Voraus

MfG

Hasan

        
Bezug
Flächenbestimmung: Integration
Status: (Antwort) fertig Status 
Datum: 10:33 Sa 06.12.2008
Autor: tomekk

Hallo,

zu Teil a)

setze a=1 in deine Gleichung ein, dann bekommst du eine Funktion 3. Grades, die um 1 an der y-Achse verschoben ist. Somit kannst du sie direkt zeichnen oder du machst dir eine Wertetabelle.
Um die Fläche auszurechnen musst du das Integral über deinem Intervall (0,1) bilden, das mit a=1 folgendermaßen aussehen müsste:
[mm] \integral_{0}^{1}{(x^3 + 1) dx} [/mm]

Ausrechnen und du erhältst deine Fläche.

zu Teil b)

Nur soviel: Um etwas zu maximieren bzw. minimieren rechnet man immer mit der ersten und zweiten Ableitung!

Viel Erfolg! :)

Bezug
                
Bezug
Flächenbestimmung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:08 So 07.12.2008
Autor: plutino99

Erstmals vielen Dank für die angebotene Hilfe

Nur habe ich noch eine Vertsändnisfrage zur Teilaufgabe b):

Muss ich von der gegeben Funktion die erste und zweite Ableitung anwenden und damit rechnen,oder mit der Stammfunktion,also iintegrierten Funktion weiterrechnen?

Vielen dank im Voraus

MfG
Hasan

Bezug
                        
Bezug
Flächenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 So 07.12.2008
Autor: M.Rex

Hallo

Berechne mal

[mm] \integral_{0}^{1}\bruch{1}{a}x³+a²dx [/mm]
[mm] =\left[\bruch{1}{4a}x^{4}+a²x\right]_{0}^{1} [/mm]
[mm] =\left[\bruch{1}{4a}1^{4}+a²*1\right]-\left[\bruch{1}{4a}0^{4}+a²*0\right] [/mm]
[mm] =\bruch{1}{4a}+a² [/mm]

Also ist die Fläche mit der Funktion [mm] A(a)=\bruch{1}{4a}+a² [/mm]

Und davon suchst du jetzt das Minimum, also A'(a)=0 und A''(a)>0

Marius

Bezug
                                
Bezug
Flächenbestimmung: Korrektur,Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 09.12.2008
Autor: plutino99

Vielen Dank für die angebotene Hilfe

Mein Ergebnis lautet folgendermaßen:

[mm] A'(a)=-\bruch{1}{4a^2}+2a=0\Rightarrow =\bruch{1}{2} [/mm]

A''(a)= [mm] \bruch{1}{8a^3}+2 [/mm]
[mm] A''(\bruch{1}{2})=3 [/mm]

Somit wird die Fläche für den Wert [mm] a=\bruch{1}{2} [/mm] minimal.

Aber wie kriege ich denn den minimalen Flächeninhalt raus?
Würd mich über eure hilfe freuen.

Vielen Dank im Voraus

MfG
Hasan



Bezug
                                        
Bezug
Flächenbestimmung: einsetzen
Status: (Antwort) fertig Status 
Datum: 19:08 Di 09.12.2008
Autor: Loddar

Hallo Hasan!


> Mein Ergebnis lautet folgendermaßen:
>  
> [mm]A'(a)=-\bruch{1}{4a^2}+2a=0\Rightarrow =\bruch{1}{2}[/mm]

[ok]

  

> A''(a)= [mm]\bruch{1}{8a^3}+2[/mm]

[notok] Das muss heißen: $A''(a) \ = \ [mm] \bruch{1}{2*a^3}+2$ [/mm]

  

> Somit wird die Fläche für den Wert [mm]a=\bruch{1}{2}[/mm] minimal.

[ok]

  

> Aber wie kriege ich denn den minimalen Flächeninhalt raus?

Setze den ermittelten Werte [mm] $a_{\min} [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm] in die Flächenfunktion $A(a) \ = \ ...$ ein.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]