|f| < M auf C --> f konstant < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $f(z) = [mm] \sum_{k=0}^{\infty}a_{k}*z^{k}$ [/mm] eine Potenzreihe mit Konvergenzradius [mm] \infty. [/mm] Weiter sei f beschränkt auf [mm] \IC. [/mm] Zeige: Dann ist f konstant. |
Hallo!
Diese Aussage soll ich beweisen. Wir haben allerdings noch keine Cauchy'sche Integralformel gehabt, überhaupt Integration kam im Moment noch nicht vor.
Meine Idee sah wie folgt aus: Angenommen, f wäre nicht konstant. Dann gibt es [mm] N\in\IN [/mm] so, dass [mm] $a_{N}\not= [/mm] 0$ ist. Entsprechend ist dann aber [mm] |a_{n}*z^{N}|\to\infty [/mm] (|z| [mm] \to\infty), [/mm] also f nicht beschränkt.
Das ist aber, glaube ich, ziemlicher Schwachsinn, weil es ja durchaus Potenzreihen gibt, die beschränkte Funktionen auf ganz [mm] \IR [/mm] darstellen, und die trotzdem nicht konstant sind, z.B. die Potenzreihe vom Sinus.
Ich muss also irgendwie noch die besonderen Eigenschaften von komplexen Potenzreihen einbringen, z.B. dass die Potenzreihe eine holomorphe Funktion darstellt. Aber wie genau mache ich das?
Vielen Dank für Eure Hilfe!
Grüße,
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:58 Do 13.05.2010 | Autor: | rainerS |
Hallo Stefan!
> Sei [mm]f(z) = \sum_{k=0}^{\infty}a_{k}*z^{k}[/mm] eine Potenzreihe
> mit Konvergenzradius [mm]\infty.[/mm] Weiter sei f beschränkt auf
> [mm]\IC.[/mm] Zeige: Dann ist f konstant.
> Hallo!
>
> Diese Aussage soll ich beweisen. Wir haben allerdings noch
> keine Cauchy'sche Integralformel gehabt, überhaupt
> Integration kam im Moment noch nicht vor.
>
> Meine Idee sah wie folgt aus: Angenommen, f wäre nicht
> konstant. Dann gibt es [mm]N\in\IN[/mm] so, dass [mm]a_{N}\not= 0[/mm] ist.
> Entsprechend ist dann aber [mm]|a_{n}*z^{N}|\to\infty[/mm] (|z|
> [mm]\to\infty),[/mm] also f nicht beschränkt.
>
> Das ist aber, glaube ich, ziemlicher Schwachsinn, weil es
> ja durchaus Potenzreihen gibt, die beschränkte Funktionen
> auf ganz [mm]\IR[/mm] darstellen, und die trotzdem nicht konstant
> sind, z.B. die Potenzreihe vom Sinus.
Ja. Mit dem Argument kannst du aber sofort überlegen, dass die Reihe unendlich viele Glieder haben muss, denn hätte sie nur endlich viele, dann wäre es ein Polynom, und das ist nicht beschränkt.
> Ich muss also irgendwie noch die besonderen Eigenschaften
> von komplexen Potenzreihen einbringen, z.B. dass die
> Potenzreihe eine holomorphe Funktion darstellt. Aber wie
> genau mache ich das?
Du hast doch dieser Tage gezeigt, dass
[mm] \integral_{0}^{2\pi}|f(re^{it})|^{2} dt = 2\pi\sum_{k=0}^{\infty}|a_{k}|^{2}r^{2k} [/mm]
gilt.
Viele Grüße
Rainer
|
|
|
|
|
Hallo Rainer,
danke für deine Antwort!
> Ja. Mit dem Argument kannst du aber sofort überlegen,
> dass die Reihe unendlich viele Glieder haben muss, denn
> hätte sie nur endlich viele, dann wäre es ein Polynom,
> und das ist nicht beschränkt.
Ok, das verstehe ich.
Allerdings, brauche ich das im Folgenden?
> Du hast doch dieser Tage gezeigt, dass
>
> [mm]\integral_{0}^{2\pi}|f(re^{it})|^{2} dt = 2\pi\sum_{k=0}^{\infty}|a_{k}|^{2}r^{2k}[/mm]
>
> gilt.
Mhhh. Du hast Recht. Wie schön das doch alles zusammenhängt.
Also: Wenn f beschränkt ist, weiß ich, dass die linke Seite der Gleichung ebenfalls beschränkt ist.
Ist f nun aber nicht konstant, so gibt es mindestens ein [mm] a_{N}\not= [/mm] 0. Die rechte Seite wird dann für [mm] r\to\infty [/mm] aber beliebig groß...
Wäre das schon der Beweis (also wirklich nur mit einem [mm] a_{N}\not= [/mm] 0 ?).
Danke für die Hilfe!!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:32 Do 13.05.2010 | Autor: | rainerS |
Hallo Stefan!
> Hallo Rainer,
>
> danke für deine Antwort!
>
> > Ja. Mit dem Argument kannst du aber sofort überlegen,
> > dass die Reihe unendlich viele Glieder haben muss, denn
> > hätte sie nur endlich viele, dann wäre es ein Polynom,
> > und das ist nicht beschränkt.
>
> Ok, das verstehe ich.
> Allerdings, brauche ich das im Folgenden?
>
> > Du hast doch dieser Tage gezeigt, dass
> >
> > [mm]\integral_{0}^{2\pi}|f(re^{it})|^{2} dt = 2\pi\sum_{k=0}^{\infty}|a_{k}|^{2}r^{2k}[/mm]
>
> >
> > gilt.
>
> Mhhh. Du hast Recht. Wie schön das doch alles
> zusammenhängt.
> Also: Wenn f beschränkt ist, weiß ich, dass die linke
> Seite der Gleichung ebenfalls beschränkt ist.
>
> Ist f nun aber nicht konstant, so gibt es mindestens ein
> [mm]a_{N}\not=[/mm] 0. Die rechte Seite wird dann für [mm]r\to\infty[/mm]
> aber beliebig groß...
>
> Wäre das schon der Beweis (also wirklich nur mit einem
> [mm]a_{N}\not=[/mm] 0 ?).
Die Argumentation ist nicht falsch, aber es geht genauer. Überleg dir dochmal, was daraus folgt, dass jedes einzelne Glied der Summe [mm] $\ge0$ [/mm] ist. Dadurch kannst du eine Ungleichung für die einzelnen Summanden herleiten. Also nimm an, dass $|f(z)| [mm] \le [/mm] M$ für alle [mm] $z\in\IC$. [/mm] Was folgt für das Integral?
Viele Grüße
Rainer
|
|
|
|
|
Hallo Rainer,
zunächst danke für deine Antwort!
> > > [mm]\integral_{0}^{2\pi}|f(re^{it})|^{2} dt = 2\pi\sum_{k=0}^{\infty}|a_{k}|^{2}r^{2k}[/mm]
> Die Argumentation ist nicht falsch, aber es geht genauer.
> Überleg dir dochmal, was daraus folgt, dass jedes einzelne
> Glied der Summe [mm]\ge0[/mm] ist. Dadurch kannst du eine
> Ungleichung für die einzelnen Summanden herleiten. Also
> nimm an, dass [mm]|f(z)| \le M[/mm] für alle [mm]z\in\IC[/mm]. Was folgt
> für das Integral?
Ok, also im Falle $|f(z)| [mm] \le [/mm] M$ habe ich:
[mm] $2*\pi*M^{2} [/mm] = [mm] \integral_{0}^{2\pi}M^{2} [/mm] dt [mm] \ge \integral_{0}^{2\pi}|f(re^{it})|^{2} [/mm] dt = [mm] 2\pi\sum_{k=0}^{\infty}|a_{k}|^{2}r^{2k} \ge 2*\pi*|a_{k}|^{2}*r^{2*k}$
[/mm]
für jedes $k [mm] \in\IN_{0}$, [/mm] also $M > [mm] |a_{k}|*r^{k}$ [/mm] für jedes [mm] k\in\IN_{0}.
[/mm]
Für [mm] r\to\infty [/mm] erhalte ich damit für jedes [mm] $k\not= [/mm] 0$ sofort einen Widerspruch zur Beschränktheit von f(z).
Stimmt das so? Danke!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:37 Do 13.05.2010 | Autor: | SEcki |
> Stimmt das so? Danke!
Jupp.
SEcki
|
|
|
|
|
Hallo,
danke SEcki,
für die Antwort und die Bestätigung
Grüße,
Stefan
|
|
|
|