matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysis0-stelle dieser e-funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - 0-stelle dieser e-funktion
0-stelle dieser e-funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

0-stelle dieser e-funktion: wie komme ich auf das Ergebnis
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 09.05.2005
Autor: Catscrash

Hi@all
ich brauche die Nullstellen dieser Funktion:

[mm] y=e^{x}- \bruch{5}{4}*e^{-x}+2 [/mm]

mein Problem ist, das ich keine Ahnung habe wie ich auf -ln2 kommen soll, was anscheinend die lösung ist. generell ist es mir irgendwie nicht möglich, e-Funktionen zu lösen die 3 Summanden haben...

wär supi wenn da jemand heflen würde.

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
0-stelle dieser e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 09.05.2005
Autor: mathemaduenn

Hallo Catscrash,
vielleicht fällt es dir leichter wenn Du zunächst [mm] e^x=a [/mm] setzt.
Dann ist [mm] e^{-x}=\bruch{1}{e^x}=\bruch{1}{a}. [/mm]
Alles klar?
viele Grüße
mathemaduenn

Bezug
                
Bezug
0-stelle dieser e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mo 09.05.2005
Autor: Catscrash

juchu, big thx. das war schon mal sehr sehr gut, danke!

aber ich habe da noch ne andere frage, und zwar:

[mm] y=e^{x}-x-1 [/mm]

denn, ich kann ja [mm] e^{x} [/mm] und x nicht beides durch a ausdrücken, oder?

Bezug
                        
Bezug
0-stelle dieser e-funktion: Probieren
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 09.05.2005
Autor: Loddar

Hallo Catscrash!


Zunächst einmal [willkommenmr] !!


> [mm]y=e^{x}-x-1[/mm]
>
> denn, ich kann ja [mm]e^{x}[/mm] und x nicht beides durch a
> ausdrücken, oder?

Ich nehme mal an, Du willst hier ebenfalls die Nullstellen ermitteln.

Eine explizite Lösungsform gibt es hier m.E. nicht. Du mußt also etwas probieren. Es gibt aber genau eine (glatte) Lösung.


Alternativ wäre eine Ermittlung des Tiefpunktes der o.g. Funktion mit seinem dazugehörigen Funktionswert, der einen Rückschluß auf die Existenz und Lage der Nullstelle zulässt.


Gruß
Loddar


Bezug
                                
Bezug
0-stelle dieser e-funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mo 09.05.2005
Autor: Catscrash

hi, dankeschön, ja geraten hatte ich schon, das ist null...
dachte nur es gäbe vlt ne bessere möglichkeit :)

vielen Dank jedenfalls euch zwei und bis denne
Catscrash

Bezug
                                        
Bezug
0-stelle dieser e-funktion: Kleine Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Mo 09.05.2005
Autor: Loddar

Hallo Catscrash!


> hi, dankeschön, ja geraten hatte ich schon, das ist null...

[daumenhoch]


> dachte nur es gäbe vlt ne bessere möglichkeit :)

Mit meinem o.g. Verfahren über den Tiefpunkt kann man aber auch nachweisen, daß dies die einzige Nullstelle ist.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]