matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und Matrizen2-stufiger Produktionsprozess
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Prozesse und Matrizen" - 2-stufiger Produktionsprozess
2-stufiger Produktionsprozess < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-stufiger Produktionsprozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Mo 24.02.2014
Autor: chedda

Aufgabe
Berechnen Sie für einen zweistufigen Produktionsprozess mit den Mengenübergängen

1.Stufe  Z1  Z2           2.Stufe  E1  E2  E3
R1       1    3           Z1       2   2    1
R2       2    0           Z2       3   1    2
R3       1    1

und den Preisen für die Rohstoffe: R1: 50 GE, R2: 70 GE, R3: 40 GE die Rohstoffkosten für jede Einheit eines Endproduktes.


So nun meinen Lösungsansatz:

[mm] \vektor{R1 \\ R2 \\ R3} [/mm] = [mm] \pmat{ 1 & 3 \\ 2 & 0 \\ 1 & 1 } \* \vektor{Z1 \\ Z2} [/mm]  Formel (1)

[mm] \vektor{Z1 \\ Z2} [/mm] = [mm] \pmat{ 2 & 2 & 1 \\ 3 & 1 & 2} \* \vektor{E1 \\ E2 \\ E3} [/mm]  Formel (2)

Nun Formel (2) in (1) einsetzen

[mm] \vektor{R1 \\ R2 \\ R3} [/mm] =  [mm] \pmat{ 1 & 3 \\ 2 & 0 \\ 1 & 1 } \* \pmat{ 2 & 2 & 1 \\ 3 & 1 & 2} \* \vektor{E1 \\ E2 \\ E3} [/mm]  Formel (3)

So dann habe ich weiter gerechnet und komme auf folgendens.

[mm] \vektor{R1 \\ R2 \\ R3} [/mm] =  [mm] \vektor{11 \\ 4 \\ 3} \* \vektor{E1 \\ E2 \\ E3} [/mm]

So an diesem Punkt komme ich leider nicht mehr weiter und weiß nicht was ich nun tun soll.
Zwei Fragen habe ich dann an euch:
1. Ist mein Ansatz überhaupt richtig?
2. Wie komme ich, wenn mein Ansatz richtig ist, weiter?

Vielen Vielen Vielen Dank schon mal für eure Hilfe

Achso das Endergebnis soll k= [mm] \vektor{1030 \\ 650 \\ 610} [/mm] sein.

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
2-stufiger Produktionsprozess: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Mo 24.02.2014
Autor: Diophant

Hallo,

> Berechnen Sie für einen zweistufigen Produktionsprozess
> mit den Mengenübergängen

>

> 1.Stufe Z1 Z2 2.Stufe E1 E2 E3
> R1 1 3 Z1 2 2 1
> R2 2 0 Z2 3 1 2
> R3 1 1

>

> und den Preisen für die Rohstoffe: R1: 50 GE, R2: 70 GE,
> R3: 40 GE die Rohstoffkosten für jede Einheit eines
> Endproduktes.
> So nun meinen Lösungsansatz:

>

> [mm]\vektor{R1 \\ R2 \\ R3}[/mm] = [mm]\pmat{ 1 & 3 \\ 2 & 0 \\ 1 & 1 } \* \vektor{Z1 \\ Z2}[/mm]
> Formel (1)

>

> [mm]\vektor{Z1 \\ Z2}[/mm] = [mm]%5Cpmat%7B%202%20%26%202%20%26%201%20%5C%5C%203%20%26%201%20%26%202%7D%20%5C*%20%5Cvektor%7BE1%20%5C%5C%20E2%20%20%5C%5C%20E3%7D[/mm]
> Formel (2)

>

> Nun Formel (2) in (1) einsetzen

>

> [mm]\vektor{R1 \\ R2 \\ R3}[/mm] = [mm]\pmat{ 1 & 3 \\ 2 & 0 \\ 1 & 1 } \* \pmat{ 2 & 2 & 1 \\ 3 & 1 & 2} \* \vektor{E1 \\ E2 \\ E3}[/mm]
> Formel (3)

>

> So dann habe ich weiter gerechnet und komme auf
> folgendens.

>

> [mm]\vektor{R1 \\ R2 \\ R3}[/mm] = [mm]\vektor{11 \\ 4 \\ 3} \* \vektor{E1 \\ E2 \\ E3}[/mm]

>

Ab hier wird es Murks, da das Produkt einer 3x2 mit einer 2x3-Matrix sicherlich eine 3x3-Matrix sein muss.

> So an diesem Punkt komme ich leider nicht mehr weiter und
> weiß nicht was ich nun tun soll.
> Zwei Fragen habe ich dann an euch:
> 1. Ist mein Ansatz überhaupt richtig?

Ansatz zunächst ja, Matrizenmultiplikation: Sechs, setzen. ;-)

> 2. Wie komme ich, wenn mein Ansatz richtig ist, weiter?

Wenn du das mit der Multiplikation hinbekommen hast, dann musst du halt schlicht und ergreifend ausrechnen bzw. ablesen, wie viele ME der Rohstoffe man für jede Einheit des Endprodukts benötigt und diese Mengen jeweils noch mit den entsprechenden Geldeinheiten multiplizieren. Das ist vom Prinzip her auch nicht anders, als wenn man beim Metzger Salami kauft. :-)

Gruß, Diophant

Bezug
                
Bezug
2-stufiger Produktionsprozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Mo 24.02.2014
Autor: chedda

Danke für die tolle Antwort. Mein nächstes Problem folgt direkt.

[mm] \vektor{R1 \\ R2 \\ R3} [/mm] = [mm] \pmat{ 1 & 3 \\ 2 & 0 \\ 1 & 1 } \* \pmat{ 2 & 2 & 1 \\ 3 & 1 & 2 } \* \vektor{E1 \\ E2 \\ E3} [/mm]

So habe dann nochmal gerechnet und komme nun auf folgendes:

[mm] \vektor{R1 \\ R2 \\ R3} [/mm] = [mm] \pmat{ 11 & 5 & 7\\ 4 & 4 & 2\\ 5 & 3 & 3} \* \vektor{E1 \\ E2 \\ E3} [/mm]

Das Ergebnis würde ich nun wie folgt interpretieren:

R1= 11 [mm] \* [/mm] E1 + 5 [mm] \* [/mm] E2 + 7 [mm] \* [/mm] E3
R2= 4 [mm] \* [/mm] E1 + 4 [mm] \* [/mm] E2 + 2 [mm] \* [/mm] E3
R3= 5 [mm] \* [/mm] E1 + 3 [mm] \* [/mm] E2 + 3 [mm] \* [/mm] E3

Nur wie komme ich nun auf E1/2/3? Wenn ich R1/2/3 einsetze stimmt einmal das Ergebnis nicht und ich kann ja auch nicht einfach R1/2/3 für E1/2/3 einsetzen.

R1= 11 [mm] \* [/mm] 50 GE + 5 [mm] \* [/mm] 70 GE + 7 [mm] \* [/mm] 40 GE = 1180 GE
R2= 4 [mm] \* [/mm] 50 GE + 4 [mm] \* [/mm] 70 GE + 2 [mm] \* [/mm] 40 GE = 560 GE
R3= 5 [mm] \* [/mm] 50 GE + 3 [mm] \* [/mm] 70 GE + 3 [mm] \* [/mm] 40 GE = 580 GE

Die Lösung wäre [mm] \vektor{1030 \\ 650 \\ 610} [/mm]

Mfg

Bezug
                        
Bezug
2-stufiger Produktionsprozess: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mo 24.02.2014
Autor: Diophant

Hallo,

> Danke für die tolle Antwort. Mein nächstes Problem folgt
> direkt.

>

> [mm]\vektor{R1 \\ R2 \\ R3}[/mm] = [mm]\pmat{ 1 & 3 \\ 2 & 0 \\ 1 & 1 } \* \pmat{ 2 & 2 & 1 \\ 3 & 1 & 2 } \* \vektor{E1 \\ E2 \\ E3}[/mm]

>

> So habe dann nochmal gerechnet und komme nun auf
> folgendes:

>

> [mm]\vektor{R1 \\ R2 \\ R3}[/mm] = [mm]\pmat{ 11 & 5 & 7\\ 4 & 4 & 2\\ 5 & 3 & 3} \* \vektor{E1 \\ E2 \\ E3}[/mm]

>

Das ist jetzt zunächst einmal richtig. [ok]

> Das Ergebnis würde ich nun wie folgt interpretieren:

>

> R1= 11 [mm]\*[/mm] E1 + 5 [mm]\*[/mm] E2 + 7 [mm]\*[/mm] E3
> R2= 4 [mm]\*[/mm] E1 + 4 [mm]\*[/mm] E2 + 2 [mm]\*[/mm] E3
> R3= 5 [mm]\*[/mm] E1 + 3 [mm]\*[/mm] E2 + 3 [mm]\*[/mm] E3

>

Ja: genau so ist es. Da muss ich mich auch entschuldigen, weil meine Bemerkung, man könne die Lösung ablesen, die war vorschnell und nicht durchdacht.

> Nur wie komme ich nun auf E1/2/3? Wenn ich R1/2/3 einsetze
> stimmt einmal das Ergebnis nicht und ich kann ja auch nicht
> einfach R1/2/3 für E1/2/3 einsetzen.

Löse (theoretisch) das LGS in (E1,E2,E3). Wobei es hier das Problem gibt, dass die Koeffizientenmatrix singulär ist und es somit unendlich viele Lösungen gibt. Bist du sicher, dass alle Daten stimmen und die Aufgabe komplett wiedergegeben ist?

EDIT:
Ich hatte vorhin einen gewaltigen Hänger. Natürlich kann man an der 3x3-Matrix direkt ablesen, welche Mengen der drei Rohstoffe man jeweils für jedes Endprodukt benötigt. Der linke Spaltenvektor sagt dir dies bspw. für E1. Überlege dir, weshalb!

>

> R1= 11 [mm]\*[/mm] 50 GE + 5 [mm]\*[/mm] 70 GE + 7 [mm]\*[/mm] 40 GE = 1180 GE
> R2= 4 [mm]\*[/mm] 50 GE + 4 [mm]\*[/mm] 70 GE + 2 [mm]\*[/mm] 40 GE = 560 GE
> R3= 5 [mm]\*[/mm] 50 GE + 3 [mm]\*[/mm] 70 GE + 3 [mm]\*[/mm] 40 GE = 580 GE

>

Nein, so herum funktioniert es nicht. Wie gesagt, dass obige LGS enthält eine lineare Abhängigkeit, und ob das beabsichtigt ist (dann bräuchte man weitere Bedingungen) oder aber auf Grund von Fehlern in den Ausgangsdaten zu Stande kommt, dass kannst letztendlich nur du klären.

Gruß, Diophant
 

Bezug
                                
Bezug
2-stufiger Produktionsprozess: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Di 25.02.2014
Autor: chedda

So nur damit die Aufgabe dann auch vollständig ist. Bin jetz doch endlich auf das Ergebnis gekommen.

[mm] \vektor{R1 \\ R2 \\ R3} [/mm] = [mm] \pmat{ 11 & 5 & 7 \\ 4 & 4 & 2 \\ 5 & 3 & 3} \* \vektor{E1 \\ E2 \\ E3} [/mm]

Ich habe als falsch abgelsen. Die 1. Spalte gibt jeweils die Anzahl von R1/2/3 an.
Also

E1 = 11 [mm] \* [/mm] 50 GE + 4 [mm] \* [/mm] 70 GE + 5 [mm] \* [/mm] 40 GE = 1030 GE
E2 = 5 [mm] \* [/mm] 50 GE + 4 [mm] \* [/mm] 70 GE + 3 [mm] \* [/mm] 40 GE = 650 GE
E3 = 7 [mm] \* [/mm] 50 GE + 2 [mm] \* [/mm] 70 GE + 3 [mm] \* [/mm] 40 GE = 610 GE

und dieses Ergebenis passt dann auch zur Lösung.

Danke an Diophant für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]