2. Ableitung einer e Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:53 Mi 18.12.2013 | Autor: | j0schl |
Guten Tag,
ich bräuchte momentan lurz eure Hilfe.
Undzwar geht es um folgende Funktion:
f(x)=(x+5)*e^2x+5
Die erste Ableitung habe ich bereits mit Anwendung der Ketten und Produktregel bestimmt. Ich hoffe sie ist korrekt.
f´(x)=(e^2x+5)+(2e^2x+5)*(x+5)
Nun brauche ich auch noch die zweite Ableitung. Kann mir jemand dabei helfen wie genau ich diese jetzt bestimmen muss. Es wäre wirklich sehr hilfreich wenn mir jemand dazu einen Rat geben könnte und mir dabei nicht nur alleine die Lösung geben würde, sondern gleich eine Abfolge mit gibt.
Vielen Dank schon einmal !
J0schl
ps:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:46 Mi 18.12.2013 | Autor: | j0schl |
Vielen Dank erst einmal für die schnelle Antwort. Ich versuche es jetzt erst einmal mit dem Foreneditor.
Ansonsten stehe ich doch ein wenig auf dem Schlauch was das ausklammern betrifft.
Wenn ich jetzt meine Funktion $ [mm] f'(x)=e^{2x+5}+2\cdot{}e^{2x+5}\cdot{}(x+5) [/mm] $ habe, kann ich doch die [mm] e^{2x+5] [/mm] nicht so einfach ausklammern oder doch? Ich sage ja, ich stehe momentan auf dem Schlauch. Ich hatte mir schon vorher gedacht, dass ich erst einmal vereinfachen muss, nur komme ich nicht dahin.
Wäre super wenn du deine Lösung die du als Ansatz gegeben hast noch weiter ausführen könntest, damit ich eventuell dann folgen könnte.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:05 Mi 18.12.2013 | Autor: | Marcel |
Hallo Joschi,
> Vielen Dank erst einmal für die schnelle Antwort. Ich
> versuche es jetzt erst einmal mit dem Foreneditor.
Formeleditor heißt das Ding.
> Ansonsten stehe ich doch ein wenig auf dem Schlauch was
> das ausklammern betrifft.
>
> Wenn ich jetzt meine Funktion
> [mm]f'(x)=e^{2x+5}+2*e{2x+5}*(x+5)[/mm]
Du wolltest sicher
[mm] $f'(x)=e^{2x+5}+2*e^{2x+5}*(x+5)$
[/mm]
schreiben (die ^ nicht vergessen)!
> habe, kann ich doch die[mm] e{2x+5][/mm]
> nicht so einfach ausklammern oder doch?
Warum nicht?
[mm] $f'(x)=(e^{2x+5})+(2e^{2x+5})*(x+5)=e^{2x+5}*(1+2*(x+5))=...$ [/mm]
(Denke daran, dass man $1+2(x+5)$ noch weiter ausrechnen kann...)
Das ist sinnvoll, aber bräuchtest Du auch eigentlich nicht:
Aus $u(x)=g(x)+h(x)$ folgt schon
[mm] $u'(x)=g'(x)+h'(x)\,$ [/mm] (kurz: [mm] $(g+h)'(x)=\{g(x)+h(x)\}'=g'(x)+h'(x)$)
[/mm]
sofern $g'(x)$ und $h'(x)$ existieren.
Du kannst also (formal "grob") auch so rechnen:
[mm] $f''(x)=(f'(x))'=\{(e^{2x+5})+(2e^{2x+5})*(x+5)\}'=(e^{2x+5})'+\{(2e^{2x+5})*(x+5)\}'=...$
[/mm]
Ich würde sagen: Rechne erst mit Loddars Vereinfachung. Danach rechne
so, wie ich es vorgeschlagen habe, und denke am Ende dann an
Vereinfachungen (Loddars Weg ist vielleicht etwas übersichtlicher). Beide
Rechnungen sollten zum gleichen Ergebnis führen - somit kannst Du auch
selbst kontrollieren, ob Du irgendwo einen Fehler gemacht hast (es ist
jedenfalls eher nicht zu erwarten, dass Du falsch gerechnet hast, wenn
beide Ergebnisse übereinstimmen - nichtsdestotrotz solltest Du Deine
Rechnungen zur Kontrolle hier nochmal präsentieren).
Gruß,
Marcel
|
|
|
|
|
Hallo j0schl,
> Ich denke ich bin jetzt dahinter gekommen
>
> Leite ich [mm]e^{2x+5}*(2x+11)[/mm] ab, folgt :
>
> [mm]f''(x)=2e^{2x+5}+2e^{2x+5}*(x+11)[/mm] Woraus widerum nach dem
Hier muss es doch lauten:
[mm]f''(x)=2e^{2x+5}+2e^{2x+5}*(\red{2}x+11)[/mm]
> Ausklammern folgt :
>
> [mm]f''(x)= 2e^{2x+5}*(1+2*(x+11))= 2e^{2x+5}*(2x+23)[/mm]
>
> Zur erneuten Überprüfung bilde ich nun die 3. Ableitung
> :
>
> [mm]f'''(x)=4e^{2x+5}*(2x+23)+4e^{2x+5}[/mm]
>
> Ist es nun richtig?
> Ich bin euch sehr dankbar für eure Hilfe! Qualifiziert und
> rasend schnell Danke
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:37 Mi 18.12.2013 | Autor: | j0schl |
Ich seh schon, war ein Tipfehler.
Also ist es dann wie folgt: $ [mm] f''(x)=2e^{2x+5}+2e^{2x+5}\cdot{}(2x+11) [/mm] $
und für die dritte Ableitung folgt dann:
$ [mm] f'''(x)=4e^{2x+5}\cdot{}(2x+23)+8e^{2x+5} [/mm] $
|
|
|
|
|
Hallo j0schl ,
> Ich seh schon, war ein Tipfehler.
>
> Also ist es dann wie folgt:
> [mm]f''(x)=2e^{2x+5}+2e^{2x+5}\cdot{}(2x+11)[/mm]
>
[mm]f''(x)=4*\left(x+6\right)*e^{2x+5}[/mm]
> und für die dritte Ableitung folgt dann:
> [mm]f'''(x)=4e^{2x+5}\cdot{}(2x+23)+8e^{2x+5}[/mm]
>
Das stimmt nicht.
Gruss
MathePower
|
|
|
|