matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstiges2. Punkt im Dreieck bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - 2. Punkt im Dreieck bestimmen
2. Punkt im Dreieck bestimmen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2. Punkt im Dreieck bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mi 09.01.2008
Autor: Rudy

Wir sollen aus dem Punkt A (217m;419m), dem Winkel [mm] \alpha [/mm] (78gon) und der Strecke c (122m) die Koordinaten des Punktes B bestimmen? Kann mir jemand sagen, wie das geht?

Danke!

        
Bezug
2. Punkt im Dreieck bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mi 09.01.2008
Autor: statler

Mahlzeit!

> Wir sollen aus dem Punkt A (217m;419m), dem Winkel [mm]\alpha[/mm]
> (78gon) und der Strecke c (122m) die Koordinaten des
> Punktes B bestimmen? Kann mir jemand sagen, wie das geht?

Das würde mich wundern, wenn das jemand könnte, weil diese Angaben einfach nicht ausreichen.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
2. Punkt im Dreieck bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mi 09.01.2008
Autor: Rudy

Ändert sich das, wenn man zusätzlich annimmt, dass die Seite b parallel zur Y-Achse verläuft?

Bezug
                        
Bezug
2. Punkt im Dreieck bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mi 09.01.2008
Autor: statler


> Ändert sich das, wenn man zusätzlich annimmt, dass die
> Seite b parallel zur Y-Achse verläuft?

Ganz erheblich! Aber dann brauchst du den Winkel gar nicht mehr. Dann hat B doch bei der üblichen Benamsung dieselbe x-Koordinate wie A und die y-Koordinate von B ist um die Länge von c größer (oder kleiner, je nach Lage) als die von A.

Nach C ist ja nicht gefragt...

Oh, ich war zu schnell, ich habe c parallel zur y-Achse gelegt, also alles falsch, sorry!

Gruß
Dieter



Bezug
                                
Bezug
2. Punkt im Dreieck bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Mi 09.01.2008
Autor: Rudy

Wieso? Also ich gehe davon aus, dass die übliche Namensgebung so aussieht: Punkte A, B, C; dazugehörige Winkel [mm] \alpha [/mm] , [mm] \beta [/mm] , [mm] \gamma; [/mm] und gegenüberliegende Seiten a, b, c. Wenn also b parallel zur Y-Achse verläuft, dann meine ich damit die Seite, die A und C verbindet (eben gegenüber von Punkt B). Aber mitlerweile dürfte ich selbst auf die Lösung gekommen sein:

[mm]B_y = A_y + c*sin(90°-\alpha)[/mm]
[mm]B_x = A_x + c*cos(90°-\alpha)[/mm]

([mm]90°-\alpha[/mm] ist die Steigung von c)

Die Ergebnisse passen jedenfalls zur Zeichnung! Macht das so Sinn?


Bezug
                                        
Bezug
2. Punkt im Dreieck bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 09.01.2008
Autor: statler

Hi!

> Wieso? Also ich gehe davon aus, dass die übliche
> Namensgebung so aussieht: Punkte A, B, C; dazugehörige
> Winkel [mm]\alpha[/mm] , [mm]\beta[/mm] , [mm]\gamma;[/mm] und gegenüberliegende
> Seiten a, b, c. Wenn also b parallel zur Y-Achse verläuft,
> dann meine ich damit die Seite, die A und C verbindet (eben
> gegenüber von Punkt B). Aber mitlerweile dürfte ich selbst
> auf die Lösung gekommen sein:
>  
> [mm]B_y = A_y + c*sin(90°-\alpha)[/mm]
>  [mm]B_x = A_x + c*cos(90°-\alpha)[/mm]
>  
> ([mm]90°-\alpha[/mm] ist die Steigung von c)
>  
> Die Ergebnisse passen jedenfalls zur Zeichnung! Macht das
> so Sinn?

Ich hatte mich oben verheddert, habe das aber nachgetragen. Dein Ergebnis sieht gut aus, es gibt allerdings 2 Lösungen (mit - statt +).

Gruß
Dieter

Bezug
                        
Bezug
2. Punkt im Dreieck bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mi 09.01.2008
Autor: weduwe

ja
schneide g: [mm] y=tan(\frac{\pi}{2}-\alpha)(x-x_A)+y_A [/mm]
mit K: [mm] (x-x_A)^2+(y-y_A)^2=c^2 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]