matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-102 Brüche mit Variable x kürzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - 2 Brüche mit Variable x kürzen
2 Brüche mit Variable x kürzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Brüche mit Variable x kürzen: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 11.01.2017
Autor: StrohUnderdog

Aufgabe
Bestimmen Sie alle reellen Lösungen der folgenden Gleichung

Hallo gegeben ist der Bruch:

[mm] \bruch{x+1}{x+2} [/mm] = - [mm] \bruch{2}{x-4} [/mm]

Ich weiß ja, dass x = -3 sein muss, kann man ja auch im kopf rechnen, aber wie soll ich das bitteschön schriftlich (rechnerisch) darstellen? Ich war noch nie gut in bruchrechnung, und die Aufgabe lässt mich echt verzeiwefeln.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
2 Brüche mit Variable x kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 11.01.2017
Autor: Diophant

Hallo,

x=-3 ist keine Lösung dieser Gleichung. Weiter ist es schon ein wenig ungewöhnlich, dass du mit deinem angegebenen mathematischen Background an einer solchen Aufgabe (Gymnasium 8. Klasse) so scheitertest, dass überhaupt keine eigene Bemühung gelingt.

Man könnte dir die Aufgabe vorrechnen. Dies tue ich aus Prinzip nicht. Im Gegenteil, ich würde dich bitten, erst einmal zum Thema Bruchgleichungen zu recherchieren.

Du musst
- die Definitionsmenge der Gleichung sowie
- den Hauptnenner bestimmen,
- mit dem Hauptnenner multiplizieren,
- die entstandene (quadratische) Gleichung lösen und zum Schluss
- prüfen, welche der erhaltenen Lösungen in der Definitionsmenge liegen*.

* Lösungshinweis: die Gleichung besitzt zwei Lösungen.


Gruß, Diophant


Bezug
                
Bezug
2 Brüche mit Variable x kürzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Sa 14.01.2017
Autor: StrohUnderdog

Ich bin jetzt wie folgt vorgegangen:

[mm] \bruch{x+1}{x+2} [/mm] = [mm] -\bruch{2}{x-4} [/mm]  |*(x-4)  |*(x+2)

X+1 * (x-4)= -2 * (x+2)

[mm] (x^{2}+1)+(-4x-4) [/mm] = -2x-4

[mm] x^{2}-4x-3 [/mm] = -2x-4  |+4

[mm] x^{2}-4x+1 [/mm] = -2x  |/(-2)

[mm] \bruch{x^{2}}{2}+2x+0,5 [/mm] = x  | p-q Formel anwenden

[mm] \bruch{{2}}{2} \pm \wurzel{(\bruch{2}{2})^{2}-0,5} [/mm] = [mm] x_{1,2} [/mm]

x1= -0,293
x2= -1,707

Bezug
                        
Bezug
2 Brüche mit Variable x kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 14.01.2017
Autor: Diophant

Hallo,

> Ich bin jetzt wie folgt vorgegangen:

>

> [mm]\bruch{x+1}{x+2}[/mm] = [mm]-\bruch{2}{x-4}[/mm] |*(x-4) |*(x+2)

>

> X+1 * (x-4)= -2 * (x+2)

>

> [mm](x^{2}+1)+(-4x-4)[/mm] = -2x-4

Ab dem obigen Schritt ist es falsch (wo kommt der Faktor [mm] (x^2+1) [/mm] auf einmal her?).

> [mm]x^{2}-4x-3[/mm] = -2x-4 |+4

>

> [mm]x^{2}-4x+1[/mm] = -2x |/(-2)

>

> [mm]\bruch{x^{2}}{2}+2x+0,5[/mm] = x | p-q Formel anwenden

>

> [mm]\bruch{{2}}{2} \pm \wurzel{(\bruch{2}{2})^{2}-0,5}[/mm] =
> [mm]x_{1,2}[/mm]

>

> x1= -0,293
> x2= -1,707

Wie gesagt, das ist falsch. Und wenn du dem Problem Bruchgleichung einigermaßen Herr werden willst, dann solltest du meine Ratschläge aus der ersten Antwort nicht so in den Wind schießen. Informiere dich über nicht-äquivalente Gleichungsumformungen und mache dir klar, weshalb man bei Bruchgleichungen stets die Definitionsmenge betrachten bzw. beachten muss.

Deine Fehler hier fangen allerdings schon beim Multiplizieren von Termen an...


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 7h 01m 5. angela.h.b.
SIntRech/Partielle Integration/Substitu
Status vor 8h 44m 5. Takota
UAnaRn/Satz Implizite Funktion System
Status vor 22h 08m 2. HJKweseleit
UFina/Effektiver Zinssatz
Status vor 1d 7h 38m 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status vor 1d 9h 38m 2. Gonozal_IX
UWTheo/Konstruktion von ZV
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]