3-Sphäre in R^4 < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:04 Mo 18.08.2014 | Autor: | Qwert64 |
Aufgabe | Die Menge [mm] S^3:= [/mm] {q [mm] \in [/mm] H| N(q) = 1} ist die unitäre 3-Sphäre in [mm] \IR^4.
[/mm]
(H ist der Schiefkörper der Quaternionen). |
Hallo :)
Ich würde gerne mehr mit dem Begriff einer Sphäre anfangen können, insbesondere im obigen Zusammenhang.
Ich hoffe mal ich hab es richtig übersetzt, im Englischen war es "unit 3-sphere". Also dass das irgendwie so eine Einheitskugel ist, ist mir relativ klar, aber ist das oben jetzt eine Definition oder ein Satz. Also sagt mir das sowas wie [mm] S^3 [/mm] ist eine unitäre 3-Sphäre generell und dann logischerweise auch in in [mm] \IR^4 [/mm] oder ist es irgendwie hey guckt mal [mm] S^3 [/mm] ist in [mm] \IR^4 [/mm] eine 3-Sphäre, sapperlot! Vielleicht könnte mir jemand ein bisschen mit dem Begriff weiterhelfen :)
lg
Qwert
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:09 Mo 18.08.2014 | Autor: | fred97 |
> Die Menge [mm]S^3:=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{q [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
H| N(q) = 1} ist die unitäre
> 3-Sphäre in [mm]\IR^4.[/mm]
> (H ist der Schiefkörper der Quaternionen).
> Hallo :)
> Ich würde gerne mehr mit dem Begriff einer Sphäre
> anfangen können, insbesondere im obigen Zusammenhang.
>
> Ich hoffe mal ich hab es richtig übersetzt, im Englischen
> war es "unit 3-sphere". Also dass das irgendwie so eine
> Einheitskugel ist, ist mir relativ klar, aber ist das oben
> jetzt eine Definition oder ein Satz.
Eine Definition.
> Also sagt mir das
> sowas wie [mm]S^3[/mm] ist eine unitäre 3-Sphäre generell und dann
> logischerweise auch in in [mm]\IR^4[/mm] oder ist es irgendwie hey
> guckt mal [mm]S^3[/mm] ist in [mm]\IR^4[/mm] eine 3-Sphäre, sapperlot!
> Vielleicht könnte mir jemand ein bisschen mit dem Begriff
> weiterhelfen :)
Es ist [mm] S^3=\{x_0+x_1\mathrm i+x_2\mathrm j+x_3\mathrm k \in H: x_0^2+
x_1^2+x_2^2+x_3^2=1\}
[/mm]
FRED
> lg
> Qwert
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|