matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizen3x3 Matritzenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - 3x3 Matritzenberechnung
3x3 Matritzenberechnung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3x3 Matritzenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 26.02.2010
Autor: MatheNullplan00

Aufgabe
Gebe die Werte [mm] x_i_j [/mm] ,  i,j = 1, 2 ,3 an, die zur Lösung des folgenden Problems führen (Der Zusammenhang is [mm] A^{-1} [/mm] * A = E)

[mm] \pmat{x_1_1&x_1_2&x_1_3 \\x_2_1&x_2_2&x_2_3 \\x_3_1 &x_3_2&x_3_3} [/mm] $ [mm] \dot [/mm]  $ [mm] \pmat{0&2&0 \\2&0&0 \\0 &0&2} [/mm]  = [mm] \pmat{1&0&0 \\0&1&0 \\0 &0&1} [/mm]  

Hallo und einen schönen Freitag Nachmittag,

ich hoffe jemand kann mir weiterhelfen. Ich hab schon ein Problem mit der Fragestellung - versteh die Frage nicht so wirklich..

Soll ich aus dieser [mm] \pmat{0&2&0 \\2&0&0 \\0 &0&2} [/mm] Matrix die Inverse berechnen?


Bin um jeden Rat dankbar ;-)

Viele Grüße

        
Bezug
3x3 Matritzenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Fr 26.02.2010
Autor: Arcesius

Hallo

> Gebe die Werte [mm]x_i_j[/mm] ,  i,j = 1, 2 ,3 an, die zur Lösung
> des folgenden Problems führen (Der Zusammenhang is [mm]A^{-1}[/mm]
> * A = E)
>  
> [mm]\pmat{x_1_1&x_1_2&x_1_3 \\x_2_1&x_2_2&x_2_3 \\x_3_1 &x_3_2&x_3_3}[/mm]
>  [mm]\dot [/mm] [mm]\pmat{0&2&0 \\2&0&0 \\0 &0&2}[/mm]  = [mm]\pmat{1&0&0 \\0&1&0 \\0 &0&1}[/mm]
> Hallo und einen schönen Freitag Nachmittag,
>  
> ich hoffe jemand kann mir weiterhelfen. Ich hab schon ein
> Problem mit der Fragestellung - versteh die Frage nicht so
> wirklich..
>  
> Soll ich aus dieser [mm]\pmat{0&2&0 \\2&0&0 \\0 &0&2}[/mm] Matrix
> die Inverse berechnen?
>  

Joa, so könnte man die Fragestellung verstehen.. :)

>
> Bin um jeden Rat dankbar ;-)
>  
> Viele Grüße

Grüsse, Amaro

Bezug
                
Bezug
3x3 Matritzenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Fr 26.02.2010
Autor: MatheNullplan00

Hallo Amaro,

Vielen Dank für deine Antwort!

$ [mm] \pmat{&0,5&0 \\0,5&0&0 \\0 &0&0,5} [/mm] $ = [mm] A^{-1} [/mm]
das wäre dann die vollständige Lösung der Aufgabe?

Viele Grüße

Bezug
                        
Bezug
3x3 Matritzenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Fr 26.02.2010
Autor: M.Rex

Hallo

Das sieht gut aus, da

[mm] \pmat{0&0,5&0\\0,5&0&0\\0&0&0,5}*\pmat{0&2&0\\2&0&0\\0&0&2}=\pmat{1&0&0\\0&1&0\\0&0&1} [/mm]

Marius

Bezug
                                
Bezug
3x3 Matritzenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Fr 26.02.2010
Autor: MatheNullplan00

Hallo Marius,

okay Danke - dann weiß ich ja Bescheid. ;-)
Das schwerste an der Aufgabe war wohl eher die Frage zu verstehen anstatt das Rechnen :-)

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]