matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnung3xMindestens 3 Treffer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - 3xMindestens 3 Treffer
3xMindestens 3 Treffer < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3xMindestens 3 Treffer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 So 21.10.2018
Autor: hase-hh

Aufgabe
Es werden in einer Massenproduktion Teile hergestellt. Diese Teile sind erfahrungsgemäßig zu 4% defekt.

Wie viele Teile muss man der Produktion mindestens entnehmen, wenn man mit einer Wahrscheinlichkeit von mindestens 95% mindestens drei fehlerfreie Teile finden möchte?

Moin Moin,

hier frage ich mich, ob es einen einfachen Lösungsweg gibt???

Also ich definiere:  

X ist die Anzahl der fehlerfreien Teile in der Stichprobe.

p = 0,96;  q = 0,04;  n ist gesucht.


P(X [mm] \ge [/mm] 3) [mm] \ge [/mm] 0,95


1 - P(X < 3) [mm] \ge [/mm] 0,95

1 - P(X [mm] \le [/mm] 2) [mm] \ge [/mm] 0,95

P(X [mm] \le [/mm] 2) [mm] \le [/mm] 0,05

Soweit, sollte es stimmen...

[mm] \vektor{n \\ 0}*0,96^0*0,04^n [/mm] + [mm] \vektor{n \\ 1}*0,96^1*0,04^{n-1} [/mm] + [mm] \vektor{n \\ 2}*0,96^2*0,04^{n-2} \le [/mm] 0,05

[mm] 0,04^n +n*0,96*0,04^{n-1} [/mm] + [mm] \bruch{n!}{(n-2)!*2!}*0,96^2*0,04^{n-2} \le [/mm] 0,05

[mm] 0,04^n +n*0,96*0,04^{n-1} [/mm] + [mm] \bruch{n*(n-1)}{2}*0,96^2*0,04^{n-2} \le [/mm] 0,05

Nun könnte ich noch [mm] 0,04^{n-2} [/mm] ausklammern und ein bisschen zusammenfassen

[mm] 0,04^{n-2}*[0,04^2+ [/mm] n*0,96*0,04 [mm] +n*(n-1)*0,96^2] \le [/mm] 0,05

[mm] 0,04^{n-2}*[0,0016 [/mm]  + 0,0384*n [mm] +(n^2-n)*0,9216] \le [/mm] 0,05

[mm] 0,04^{n-2}*[0,0016 [/mm]  -0,88324*n [mm] +0,9216*n^2] \le [/mm] 0,05


Wenn das soweit richtig ist, wie geht es dann weiter?
Muss ich da probieren oder gibt es ein einfaches Verfahren? Oder kann ich bereits vorher die Lösung einfacher ermitteln?


Danke & Gruß!

        
Bezug
3xMindestens 3 Treffer: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 21.10.2018
Autor: abakus

Nach "Soweit sollte es stimmen" hast du in der Formel jeweils die Werte 0,04 und 0,96 vertauscht.

Aber egal, die Gleichung ist sowieso nur mit Näherungsverfahren bzw. elektronischen Hilfsmitteln zu lösen.

http://www.wolframalpha.com/input/?i=0.96%5En%2Bn*0.04*0.96%5E(n-1)%2B(n*n-n)%2F2*0.04%5E2*0.96%5E(n-2)%3D0.05

Du brauchst 156 Versuche.

Bezug
                
Bezug
3xMindestens 3 Treffer: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:16 So 21.10.2018
Autor: hase-hh


> Nach "Soweit sollte es stimmen" hast du in der Formel
> jeweils die Werte 0,04 und 0,96 vertauscht.
>  
> Aber egal, die Gleichung ist sowieso nur mit
> Näherungsverfahren bzw. elektronischen Hilfsmitteln zu
> lösen.
>  
> http://www.wolframalpha.com/input/?i=0.96%5En%2Bn*0.04*0.96%5E(n-1)%2B(n*n-n)%2F2*0.04%5E2*0.96%5E(n-2)%3D0.05
>  
> Du brauchst 156 Versuche.

Ok, aber wo soll ich die Wahrscheinlichkeiten vertauscht haben???

Trefferwahrscheinlichkeit (fehlerfreie Teile) p=0,96  und q = 0,04 (fehlerhafte Teile) ... das habe ich nicht vertauscht...



Ich erhalte durch Probieren:

Bei mindestens 3 Treffern muss n [mm] \ge [/mm] 3 sein.


n = 3     P = 22,96 %

n = 4     P = 1, 79 %

n = 5     P = 0,12 %

Also müsste n mindestens 4 sein.

Bezug
                        
Bezug
3xMindestens 3 Treffer: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 23.10.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]