matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysik5. Postulat der QM
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - 5. Postulat der QM
5. Postulat der QM < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

5. Postulat der QM: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Sa 21.05.2011
Autor: AbraxasRishi

Aufgabe
Ergibt die Messung der Größe A im Zustand |x> das Resultat [mm] a_n, [/mm] dann ist der Zustand des Systems nach der Messung gegeben durch

[mm] \frac{P(a_n)|x>}{} [/mm]

d.h. durch die normierte Projektion auf den Eigenraum von A zum Eigenwert [mm] a_n [/mm]

Hallo!

Ich habe nachgeprüft ob dieser Zustand normiert ist und bin zum Ergebnis gekommen das er so sogar eine Norm größer 1 besitzen würde.
Kann es sein das mein Prof im Skript so einen fatalen Fehler gemacht hat?
In anderen Skripten kommt im Nenner noch eine Wurzel hin, dann ist der Vektor auch normiert, in wieder anderen wird gesagt, der Folgezustand sei einfach der zugehörige Eigenvektor.
Allerdings gibt es ja im Körper der komplexen Zahlen mehrere Eigenvektoren mit Norm 1, sogar wenn der Eigenraum eindimensional ist. Ist dann dieses Postulat nicht etwas uneindeutig?
Würde mich freuen wenn mir jemand helfen würde etwas Licht ins Dunkel zu bringen...
Gruß

Rishi

        
Bezug
5. Postulat der QM: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Sa 21.05.2011
Autor: rainerS

Hallo Rishi!

> Ergibt die Messung der Größe A im Zustand |x> das
> Resultat [mm]a_n,[/mm] dann ist der Zustand des Systems nach der
> Messung gegeben durch
>  
> [mm]\frac{P(a_n)|x>}{}[/mm]
>  
> d.h. durch die normierte Projektion auf den Eigenraum von A
> zum Eigenwert [mm]a_n[/mm]
>  Hallo!
>  
> Ich habe nachgeprüft ob dieser Zustand normiert ist und
> bin zum Ergebnis gekommen das er so sogar eine Norm
> größer 1 besitzen würde.
>  Kann es sein das mein Prof im Skript so einen fatalen
> Fehler gemacht hat?
>  In anderen Skripten kommt im Nenner noch eine Wurzel hin,
> dann ist der Vektor auch normiert, in wieder anderen wird
> gesagt, der Folgezustand sei einfach der zugehörige
> Eigenvektor.

Ja, da sollte im Nenner die Wurzel stehen, denn die Funktion [mm] $P(a_n)|x>$ [/mm] must auf 1 normiert werden, also durch die Norm von [mm] $P(a_n)|x>$ [/mm] geteilt werden. Diese Norm ist, da für einen Projektionsoperator immer [mm] $P^2=P$ [/mm] gilt:

[mm] \|P(a_n)|x>\| = \wurzel{} = \wurzel{} = \wurzel{} [/mm] .

>  Allerdings gibt es ja im Körper der komplexen Zahlen
> mehrere Eigenvektoren mit Norm 1, sogar wenn der Eigenraum
> eindimensional ist. Ist dann dieses Postulat nicht etwas
> uneindeutig?

Nein. Eine einzelne Wellenfunktion [mm] $|\psi>$ [/mm] kannst du mit einer beliebigen komplexen Zahl [mm] $e^{i\phi}$ [/mm] vom Betrag 1 multiplizieren, ohne dass sich etwas ändert. Wenn du dann einen Erwartungswert eines Operators $O$ ausrechnest, fällt dieser Phasenfaktoren heraus, denn

[mm] = <\psi|e^{-i\phi}Oe^{i\phi}|\psi> = <\psi|O|\psi> [/mm] .

Das heisst aber nicht, dass du an beliebigen Stellen solche Faktoren [mm] $e^{i\phi}$ [/mm] einfügen darfst; relative Phasen zwischen Wellenfunktionen sind physikalisch relevant.  Vergleiche den Erwartungswert eines Operators für die Wellenfunktionen [mm] $|\psi_1>+|\psi_2>$ [/mm] und [mm] $|e^{i\phi_1}\psi_1>+|e^{i\phi_2}\psi_2>$ [/mm] und du bekommst heraus, dass die Differenz [mm] $\phi_1-\phi_2$ [/mm] im Ergebnis auftaucht.  Ein physikalisches Ergebnis darf aber nicht von Rechentricks abhängen, daher muss [mm] $\phi_1=\phi_2$ [/mm] sein. Das heisst wieder nicht anderes als dass du nur die gesamte Wellenfunktion mit einem solchen Faktor multiplizieren darfst, nicht ihre einzelnen Teile.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]