matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Mathematik6 aus 49
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - 6 aus 49
6 aus 49 < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

6 aus 49: Tipp
Status: (Frage) überfällig Status 
Datum: 13:12 So 26.04.2009
Autor: Held

Aufgabe
Beim Lotto werden sechs Zahlen aus [mm] \{1,2...,49} [/mm] ausgewählt.

Wie groß ist die Wahrscheinlichkeit, dass die gezogene Menge 2 Zahlen mit Differenz 1 enthält?

Hallo Community,

Also ich weiß es gibt [mm] \vektor{49 \\ 6} [/mm] Möglichkeiten, 6 Zahlen aus 49 auszuwählen.

Jetzt müsste ich wissen, wieviele Möglichkeiten es gibt, für eine Menge die 2 Zahlen mit Differenz 1 hat. Also eine Menge in der Zahlen
existieren, die aufeinander folgen.

Ich hab  angefangen mir das Allgemein für n zu Überlegen.

Für 2 Zahlen aus n ist klar, es gibt n-1 verschiedene Mengen mit dieser Eigenschaft.

Für 3 Zahlen aus n habe ich mir überlegt, erst alle 3er Kombinationen zu nehmen, in der nur 2 Aufeinanderfolgen.

Wenn ich die erste Zahl festhalte, gibt es n-3 Möglichkeitne, für die 2te n-4 , für alle folgenden bis zur vorletzten gibt es n-5,
und dann wieder n-4 und n-3 , also insgesamt:

2(n-3)+2(n-4)+(n-5)(n-4) + n-2 ,  wobei der letzte Term (n-2) alle Kombinationen sind, wo 3 Zahlen aufeinanderfolgen.

Man kann per Induktion zeigen, das [mm] d_{3}(n)=2(n-3)+2(n-4)+(n-5)(n-4) [/mm] + n-2 die anzahl Möglichkeiten ist, 3 Zahlen zu ziehen mit min. 2 aufeinanderfolgenden Zahlen.

Ich probier jetzt das selbe für 4 Zahlen, doch das wird um einiges komplizierter und ich bin mir nicht sicher, ob ich vielleicht viel zu kompliziert denke,

Das ist meine Formel für 4 Zahlen aus 6, aber ich glaube sie ist falsch,
weil weder der IA noch IS bei mir klappt :)

[mm] d_{4}(n) [/mm] = -2n² -30n +111 + [mm] \bruch{n(n+1)(2n+1)}{3} [/mm]


Gibt es evtl eine ganz einfache Idee, die Möglichkeiten von 4 rauszubekommen, wenn man die Anzahl von 3 weiß?

Gruß Held

        
Bezug
6 aus 49: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 28.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]