matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSignaltheorieAKF von Zufallsprozess
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Signaltheorie" - AKF von Zufallsprozess
AKF von Zufallsprozess < Signaltheorie < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AKF von Zufallsprozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Mi 17.12.2008
Autor: cosPhi

Hallo,

Ich hab gerade einen Hänger bezüglich meines Verständnisses der AKF (Autokorrelationsfunktion).

Die AKF von einem normalen Signal ist sehr simpel: Jedes Sample wird zeitverschoben mit sich selbst verglichen. Resultat: AKF.

Die AKF von einem Gaussschen Zufallsprozess ist auch relativ easy: Da die sampled i.i.d sind entspricht jedes Sample einer Realisierung der ZV --> [mm] \delta[n] [/mm]

Nun aber zum Problem: Ein Zufallsprozess beschreibt die Menge aller Sinussignale einer bestimmten Frequenz mit zufällig verteilter Phase (gleichverteilt).

Also für jede Realisierung des Zufallsprozesses krieg ich einen schönen Sinus raus - die Phase ist halt zufällig.

Nun soll ich aber die AKF dieses Zufallsprozesses bestimmen. Nur: Wie? Durch den Zufallsprozess habe ich ja jetzt nicht mehr nur *ein* Signal. Sondern eher ein 2D-Array: In eine Richtung geht die Zeit und in die andere die jeweilige Realisierung. Wie bestimme ich hier überhaupt die AKF? Über eine Realisierung? --> Das entspricht aber immer der gleichen AKF.

Über alle Realisierungen zu einem bestimmten Zeitpunkt? --> Hier ist die AKF nämlich auch immer genau gleich, nämlich [mm] \delta[n] [/mm] unter der Annahme dass die Phasen unabhängig gleichverteilt sind.

Also es muss fast irgendwas anderes sein, aber ich komm nicht drauf...



        
Bezug
AKF von Zufallsprozess: Tipp
Status: (Antwort) fertig Status 
Datum: 13:08 Do 25.12.2008
Autor: Infinit

Hallo cosPhi,
was Dich bei dieser Aufgabe stört, ist, dass Du nun eine Zufallsvariable in Deinem Signal noch hast, das Rechnen mit einem komplett deterministischen Signal ist man gewöhnt, aber nicht unbedingt, dass in solch einem Signal noch eine Zufallsgröße auftaucht. Nichtsdestotrotz geht das Ganze natürlich, einfach, indem man über die Zufallsgröße mittelt durch eine Erwartungswertbildung. Dies ist genau die Definition einer Autokorrelationsfunktion für einen Zufallsprozess.
Ganz formal steht da nämlich:
$$ [mm] R_{xx}(t_1, t_2) [/mm] = [mm] E\{x(\zeta, t_1) x(\zeta, t_2)\} [/mm] $$
Die Dichteverteilung ist bekannt, also kannst Du den Erwartungswert bestimmen aus der Integration der beiden Signale über die Verteilungsfunktion der Zufallsvariablen.
Ich gebe zu, dass ist etwas mehr Arbeit als die einfache Bestimmung eines Mittelwertes, aber es funktioniert genauso.
Viel Spaß dabei,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]