matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAbb. injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Abb. injektiv
Abb. injektiv < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abb. injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Do 29.10.2009
Autor: ohlala

Aufgabe
Seien X,X' Mengen $f: X [mm] \rightarrow [/mm] X'$ eine Abbildung. Beweisen Sie, dass folgende Aussagen äquivalent sind:
(i) f ist injektiv
[mm] (ii)$f(A\cap [/mm] B)= f(A) [mm] \cap [/mm] f(B)$ für alle Teilmengen $A,B [mm] \subset [/mm] X$.
(iii) [mm] f(A\B) [/mm] = f(A) \ f(B) für alle Teilmengen $A,B [mm] \subset [/mm] X$.

$(ii) [mm] \rightarrow [/mm] (i)$:
Annahme:
[mm] $f(A\cap [/mm] B)= f(A) [mm] \cap [/mm] f(B)$  injektiv, falls [mm] $f(x_1)=f(x_3) \Rightarrow x_1=x_3$ [/mm]
Beweis durch Widerspruch:
[mm] $x_1 \in A\B$ [/mm]
[mm] $x_2 \in [/mm] A [mm] \cap [/mm] B$
[mm] $x_3 \in B\A$ [/mm]
[mm] $f(A\cap [/mm] B)= [mm] f(x_2)$ [/mm]
[mm] $f(A)=[f(x_1) \cup f(x_2)]$ [/mm]
[mm] $f(B)=[f(x_3) \cup f(x_2)] [/mm] $
[mm] $f(x_2) \ne [f(x_1) \cup f(x_2)] \cap [f(x_3) \cup f(x_2)] \ne f(x_2) \cup [f(x_1) \cap f(x_3)] \Rightarrow f(x_1)=f(x_3) \Rightarrow x_1=x_3$ [/mm] Widerspruch
[mm] $\Rightarrow$ [/mm] f ist injektiv

Stimmt das so?
falls nicht bitte korrigieren, wäre sehr wichtig.
danke für die hilfe

        
Bezug
Abb. injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Fr 30.10.2009
Autor: angela.h.b.


> Seien X,X' Mengen [mm]f: X \rightarrow X'[/mm] eine Abbildung.
> Beweisen Sie, dass folgende Aussagen äquivalent sind:
>  (i) f ist injektiv
>  (ii)[mm]f(A\cap B)= f(A) \cap f(B)[/mm] für alle Teilmengen [mm]A,B \subset X[/mm].
>  
> (iii) [mm]f(A\B)[/mm] = f(A) \ f(B) für alle Teilmengen [mm]A,B \subset X[/mm].
>  
> [mm](ii) \rightarrow (i)[/mm]:
>  Annahme:
> [mm]f(A\cap B)= f(A) \cap f(B)[/mm]  injektiv, falls [mm]f(x_1)=f(x_3) \Rightarrow x_1=x_3[/mm]
>  
> Beweis durch Widerspruch:

Hallo,

wie lautet denn die Annahme, die Du hierzu triffst?

Normalerweise würde man jetzt annehmen: f ist nicht injektiv, dh. es gibt [mm] x_1, x_2 [/mm] mit [mm] x_1\not=x_3 [/mm] und [mm] f(x_1)=f(x_3) [/mm]

Vielleicht versuchst Du hier sowas in der Art:

>  [mm]x_1 \in A \ B[/mm]
>  [mm]x_2 \in A\cap B[/mm]
>  [mm]x_3 \in B \ A[/mm]
>  [mm]f(A\cap B)= f(x_2)[/mm]

Spätestens hier wird's falsch, der Fehler taucht dann aber immer wieder so oder ähnlich auf:  f(A) ist eine Menge, [mm] f(x_1) [/mm] ist ein Element dieser Menge. Aber es ist nicht(!) [mm] f(A)=f(x_1). [/mm]

Versuch's mal so.

Voraussetzung:

>  (ii)[mm]f(A\cap B)= f(A) \cap f(B)[/mm] für alle Teilmengen [mm]A,B \subset X[/mm].

Angenommen, f wäre nicht injektiv.

dann gäbe es Elemente [mm] x_1, x_2 \in [/mm] X mit [mm] x_1\not=x_2 [/mm] und [mm] f(x_1)=f(x_2). [/mm]

Jetzt kommt der Kniff: Definiere Dir Mengen [mm] A:=\{x_1\} [/mm] und [mm] B:=\{x_2}. [/mm]

Nun weiter.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]