matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Abbildung
Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Fr 02.12.2005
Autor: stevarino

Hallo

Hab hier folgende Aufgabenstellung

Bestimmen sie eine 2x2 Matrix die [mm] \vektor{1 \\ 1} [/mm] auf [mm] \vektor{1 \\ 1} [/mm] abbildet
und [mm] \vektor{1 \\ -2} [/mm] auf [mm] \vektor{1 \\ 1} [/mm]

löse ich das so
[mm] \pmat{ a & b \\ c & d }*\vektor{1 \\ 1}=\vektor{1 \\ 1} [/mm]
[mm] \pmat{ a & b \\ c & d }*\vektor{1 \\ -2}=\vektor{1 \\ 1} [/mm]

a+b=1
a-2b=1

c+d=1
c-2d=1

löst?????

Danke

lg Stevo




        
Bezug
Abbildung: Stimmt so ...
Status: (Antwort) fertig Status 
Datum: 18:51 Fr 02.12.2005
Autor: Loddar

Hallo Stevo!


[ok] Richtiger Ansatz, nun weiterrechnen ... ;-)


Gruß
Loddar


Bezug
        
Bezug
Abbildung: eine Frage
Status: (Frage) beantwortet Status 
Datum: 23:40 Sa 03.12.2005
Autor: AngelWings

Hallo!
Ich habe eine (wahrscheinlich dumme) Frage:

warum macht man a-2b=1??

ich mein das andere ist mir ja klar, aber das?

Gruß
AW

Bezug
                
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 So 04.12.2005
Autor: Sigrid

Hallo AngelWings,

>  
> warum macht man a-2b=1??

Das ergibt sich aus der Definition der Matrizenmultiplikation


[mm] \pmat{a & b \\ c & d }*\vektor{1 \\ -2}=\vektor{1 \\ 1} [/mm]

Das Produkt [mm] \pmat{ a & b }\ \vektor{1 \\ -2} [/mm]

liefert die erste komponente des Lösungsvektors (hier 1)

also [mm] a\cdot 1+b\cdot (-2) = 1 [/mm]

Gruß
Sigrid

>  
> ich mein das andere ist mir ja klar, aber das?
>  
> Gruß
>  AW

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]