matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung, Linksinveres
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Abbildung, Linksinveres
Abbildung, Linksinveres < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung, Linksinveres: Frage
Status: (Frage) beantwortet Status 
Datum: 11:08 Di 02.11.2004
Autor: MrPink

Hallo, kann mir jemand bei der folgende aufgabe helfen:

Seien M,N endlich Mengen f: M nach N eine Abbildung

1. Wieviele Linksinverse besitzt f, falls f eine injektive Abbildung ist ?
Behandle zuerst das Beispiel M = {1,2,3}, N = {1,2,3,4,5} und f: M auf N : m auf m die Einbettung.

2. Wievile Rechtsinverse besitzt f, falls f eine surjektive Abbildung ist ?

Dank im Voraus

Habe die selber Frage schon auf www.emath.de gestelt



        
Bezug
Abbildung, Linksinveres: erster Teil (verbessert!)
Status: (Antwort) fertig Status 
Datum: 11:43 Di 02.11.2004
Autor: Julius

Hallo MrPink!


> Seien M,N endlich Mengen f: M nach N eine Abbildung
>
> 1. Wieviele Linksinverse besitzt f, falls f eine injektive
> Abbildung ist ?
> Behandle zuerst das Beispiel M = {1,2,3}, N = {1,2,3,4,5}
> und f: M auf N : m auf m die Einbettung.

$g$ ist ja auf dem Bild von $f$ eindeutig festgelegt durch die Bedingung

$g(f(m)) = m$

für alle $m [mm] \in [/mm] M$.

Auf $N [mm] \setminus [/mm] f(M)$ kann $g$ beliebig gesetzt werden (also auf irgendeines der Elemente aus $M$ abgebildet werden). Wegen [mm] $\vert [/mm] N [mm] \setminus f(M)\vert [/mm] = [mm] \vert [/mm] N [mm] \vert [/mm] - [mm] \vert f(M)\vert [/mm] = [mm] \vert [/mm] N [mm] \vert [/mm] - [mm] \vert [/mm] M [mm] \vert$ [/mm] gibt es also

[mm] $\red{\vert M \vert ^{\vert N \vert - \vert M \vert }}$ [/mm]  (verbessert!)

Linksinverse von $f$, wenn $f$ injektiv ist.

Die Anzahl der Rechtsinversen bei surjektivem $f$ ist auf den ersten Blick schwieriger und mir im so hundertprozentig gerade selber nicht klar. Da muss ich erst weiter drüber nachdenken, vielleicht hat ja auch jemand anderes eine Idee? Für mich scheint es im Moment davon abzuhängen, wie viele Urbilder die Elemente aus $N$ unter $f$ haben.

Liebe Grüße
Julius


Bezug
                
Bezug
Abbildung, Linksinveres: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Di 02.11.2004
Autor: MrPink

Hallo, mir leuchtet dass irgendwie nicht so ganz ein.

Wenn ich z.B.: M = {1,2,3} und N = {1,2,3} habe ,  dann käme bei dir

[mm] (3-3)^3 [/mm] = 0 raus. Das kann doch nicht oder? ich bin zur vermutugn gekommen . dass es (| M |)! ist. Also wären es 6 Kombinationdmöglichkeiten. Was sagst du dazu? Vielleicht bin ich auch zu dämlich ?!

Bezug
                        
Bezug
Abbildung, Linksinveres: Fehler verbessert
Status: (Antwort) fertig Status 
Datum: 12:17 Di 02.11.2004
Autor: Julius

Hallo MrPink!

War ein dämlicher Fehler, den ich jetzt verbessert habe. Jetzt sollte es stimmen. Danke für den Hinweis!

Ist [mm] $M=N=\{1,2,3\}$, [/mm] so gibt es nur eine Linksinverse einer injektiven (und damit bijektiven) Abbildung $f:M [mm] \to [/mm] N$.

Liebe Grüße
Julius

Bezug
                                
Bezug
Abbildung, Linksinveres: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Di 02.11.2004
Autor: MrPink

Super danke. Obwohl dass was ich geschreiben auch totaler mumpitz war. Es handelt sich bei |m|! nur um die anzahl der Möglichkeiten injektive Abbildung zu machen. Danach war ja garnicht gefragt. Deins stimmt aber jetzt auf jeden Fall. VIELEN DANK !!!

Bezug
        
Bezug
Abbildung, Linksinveres: zum zweiten Teil
Status: (Antwort) fertig Status 
Datum: 20:27 Di 02.11.2004
Autor: Julius

Hallo!

Es sollte eigentlich

[mm] $\prod\limits_{n \in N} \vert f^{-1}(\{n\})\vert$ [/mm]

Rechtsinverse von $f:M [mm] \to [/mm] N$ geben, wenn $f$ surjektiv ist.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]