matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAbbildung in metr. Räumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Abbildung in metr. Räumen
Abbildung in metr. Räumen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung in metr. Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Do 10.11.2005
Autor: Dr.Ufo

Hallo zusammen!

Ich kämpfe grade mit folgender Aufgabe und wär für jeden Tipp zu meinem Ansatz dankbar, da ich überhaupt nicht weiterkomme!

Aufgabe:
f:X [mm] \to [/mm] Y Abbildung zwischen metr. Räumen X,Y
a) z.z: f ist stetig [mm] \Rightarrow [/mm] f( [mm] \overline{A} [/mm] ) [mm] \subset \overline{f(A)} [/mm] für jede Teilmenge A [mm] \subset [/mm] X

b) gilt auch die Umkehrung? (Nur Antwort)

c) Diskutiere das Beispiel [mm] f(x)=1/(1+x^{2}), [/mm] f: [mm] \IR \to \IR, A=\IR [/mm]


Also :
zu a)f( [mm] \overline{A} [/mm] ) [mm] \subset \overline{f(A)} [/mm]  heißt
        x [mm] \in [/mm] f( [mm] \overline{A} )\subset [/mm] x [mm] \in \overline{f(A)} [/mm]  

        [mm] \overline{f(A)} [/mm]  ={y [mm] \in [/mm] Y |  [mm] \forall \varepsilon [/mm] >0 ist
        B(y, [mm] \varepsilon) \cap [/mm] f(A) [mm] \not= \emptyset [/mm] }= { y [mm] \in [/mm] Y [mm] \forall [/mm]          
        [mm] \varepsilon [/mm] >0  [mm] \exists [/mm] a  [mm] \in [/mm] A mit f(a) [mm] \in [/mm] B(y, [mm] \varepsilon) [/mm] }  [mm] \subset [/mm] Y

       Also ist für mich zu zeigen:  [mm] \forall \varepsilon [/mm] >0 [mm] \exists [/mm] a  [mm] \in [/mm] A mit
       f(a)  [mm] \in [/mm] B(x, [mm] \varepsilon) [/mm]

       Sei also a  [mm] \in [/mm] A und B(f(a), [mm] \varepsilon) \Rightarrow \exists \delta [/mm] >0
      mit
      f(B(a, [mm] \delta)) \subset B(f(a),\varepsilon) [/mm]

     Das ist alles was ich meine zu wissen, leider komme ich jetzt überhaupt
     nicht weiter! Teil b) und c) Hab ich nur zum Verständnis
    hinzugeschrieben, da ich da leider auch auf keinen Ansatz komme!

    Vermute B) gilt nicht!

Hab die Frage nirgendwo sonst gestellt!

Danke schon mal für eure Hilfe
Dr.Ufo



        
Bezug
Abbildung in metr. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Do 10.11.2005
Autor: SEcki


>  zu a)f( [mm]\overline{A}[/mm] ) [mm]\subset \overline{f(A)}[/mm]  heißt
> x [mm]\in[/mm] f( [mm]\overline{A} )\subset[/mm] x [mm]\in \overline{f(A)}[/mm]

Also das mit der Inklusion stimmt ja nicht - soll wohl Element-Zeichen sein, oder?

> [mm]\overline{f(A)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  ={y [mm]\in[/mm] Y |  [mm]\forall \varepsilon[/mm] >0 ist

> B(y, [mm]\varepsilon) \cap[/mm] f(A) [mm]\not= \emptyset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}= { y [mm]\in[/mm] Y

> [mm]\forall[/mm]          
> [mm]\varepsilon[/mm] >0  [mm]\exists[/mm] a  [mm]\in[/mm] A mit f(a) [mm]\in[/mm] B(y,
> [mm]\varepsilon)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}  [mm]\subset[/mm] Y

>  
> Also ist für mich zu zeigen:  [mm]\forall \varepsilon[/mm] >0
> [mm]\exists[/mm] a  [mm]\in[/mm] A mit
>         f(a)  [mm]\in[/mm] B(x, [mm]\varepsilon)[/mm]

Ich sehe das schon richtig, das du blos die Definitionen abgeschrieben/ganz leicht umgeformt hast?!?

> Das ist alles was ich meine zu wissen, leider komme ich
> jetzt überhaupt
> nicht weiter!

Folgende Hinweise gebe ich mal: im Abschluß sind doch alle Punkte, die jeweils Grenzwert einer ganz in A liegenden Folge sind. Da wirmetrische Räume haben - wasfolgt den aus Folgenstetigkeit? Worin liegen also die Grenmzwerte?

> Teil b) und c) Hab ich nur zum Verständnis
> hinzugeschrieben, da ich da leider auch auf keinen Ansatz
> komme!

Naja - die c) ist das Gegenbeispiel, dass man sich in der b) sonst überlegen müsste. Bei der c) musst da ja blos einfach mal nachrechnen, was denn rauskommt alsBildbereich etc pp - also eher sehr leicht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]