Abbildung metrische Räume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien [mm] $(X,d_X)$ [/mm] und [mm] $(Y,d_Y)$ [/mm] metrische Räume und [mm] $f:X\to [/mm] Y$ eine Abbildung.
Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
a) $f$ ist stetig
b) Für jede offene Menge [mm] $U\subset [/mm] Y $ist [mm] $f^{-1}(U)$ [/mm] offen
c) Für jede abgeschlossene Menge [mm] $A\subset [/mm] Y$ ist [mm] $f^{-1}(A)\subset [/mm] X$ abgeschlossen |
Hallo zusammen,
ich arbeite gerade an der oben stehenden Aufgabe und habe im Internet folgenden Lösungsweg gefunden:
Bew:
[mm] $a)\Rightarrow [/mm] b)$
Sei $f$ stetig und $U$ offen auf $Y$. Weiter sei [mm] $x\in f^{-1}(U)$ [/mm] und somit [mm] $f(x)\in [/mm] U$
Nun ist $U$ offen und damit eine Umgebung von $f(x)$.
Wegen der Stetigkeit existiert eine Umgebung $V$ von $x$ mit [mm] $f(V)\subset [/mm] U$ und somit: [mm] $V\subset f^{-1}(U)$
[/mm]
[mm] $f^{-1}(U)$ [/mm] enthält also mit jedem Punkt noch eine Umgebung des Punktes und ist daher offen.
[mm] $b)\Rightarrow [/mm] c)$
Seien die Urbilder offener Mengen offen und $A$ abgeschlossen in $Y$.
$Y-A$ ist offen und damit auch [mm] $f^{-1}(Y-A)$ [/mm] nach Voraussetzung. Dann ist aber [mm] $f^{-1}(A)=X-f^{-1}(Y-A) [/mm] als Komplement der offenen Menge [mm] $f^{-1}(Y-A)$ [/mm] abgeschlossen.
$c) [mm] \Rightarrow [/mm] a)$
Seien jetzt die Urbilder abgeschlossener Mengen abgeschlossen.
Sei weiter [mm] $x\in [/mm] X$ ein beliebiger Punkt von $X$ und $W$ eine Umgebung von $f(x)$. Nach Definition enthält $W$ eine offene Menge $U$ mit [mm] $f(x)\subset [/mm] U [mm] \subset [/mm] W$ Das Komplement $Y-U$ ist dann abgeschlossen und nach Voraussetzung ebenso [mm] $f^{-1}(Y-U)$.
[/mm]
Dann ist wie vorher [mm] $f^{-1}(U) [/mm] als Komplement der abgeschlossenen menge [mm] $f^{-1}(Y-U)$.
[/mm]
Wegen der Offenheit ist [mm] $f^{-1}(U)$ [/mm] eine Umgebung von $x$ mit [mm] $f(x)\in f(f^{-1}(U))\subset [/mm] U [mm] \subset [/mm] W$ und das bedeutet die Stetigkeit von $f$ in $x$.
Ich verstehe den Beweis nur noch nicht so ganz und wäre sehr dankbar, wenn sich jemand die Zeit nehmen könnte mir den Beweis etwas genauer zu erklären.
Vielen Dank im Voraus:)
Grüße
Dudi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:02 Di 01.05.2012 | Autor: | fred97 |
Man kann Dir nur helfen, wenn Du sagst, an welchen Stellen Du Probleme hast.
FRED
|
|
|
|