matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAbbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Abbildungen
Abbildungen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Bijektiv/Surjektiv
Status: (Frage) beantwortet Status 
Datum: 16:46 So 23.10.2011
Autor: quasimo

Aufgabe
Die Menge $A $besitze $n$, die Menge B $m$ Elemente $(m; n [mm] \in \IN)$. [/mm]
Wann gibt es bijektive Abbildungen, und wieviele
sind es? (Bitte nicht mit vollstandiger Induktion!).>Kombinatorik

$A = (1,2,3...n)$
$B= (1,2,3...m)$
Ich hab schon im vorigen Beispiel gezeigt dass es $ [mm] m^n [/mm] $ Abbildungen gibt und
$ m*(m-1)...(m-n+1) injektiv sind$.

Ich muss ja mal schauen wieviele surjektive Abbidlungen es gibt. dass heißt jedes element von B muss mindestens einmal (kann aber auch mehrmals) getroffen werden
n muss also größer gleich m sein
Bijektiv heißt, dass jedes Element von B wird einmal(nicht mehr oder weniger) getroffen.
bei bijektiv ist m=n

wieviele Abbildungen sind bijektiv?
1...-> n Möglichkeiten abzubilden
2...-> n-1 Möglichkeiten abzubilden
n...-> (n-n+1) Möglichkeiten abzubilden

$ n * (n-1) * ...*(1) = n!$

1.Frage stimm das?
2.Frage, Ist hier nicht gefragt (oder täusche ich mich) aber wie komme ich nur auf die surjektiven Abbildungen'?

Ich habe die Frage in keinen anderen Forum gepostet.

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 So 23.10.2011
Autor: Schadowmaster

moin quasimo,


> Die Menge [mm]A [/mm]besitze [mm]n[/mm], die Menge B [mm]m[/mm] Elemente [mm](m; n \in \IN)[/mm].
>  
>  Wann gibt es bijektive Abbildungen, und wieviele
>  sind es? (Bitte nicht mit vollstandiger
> Induktion!).>Kombinatorik
>  [mm]A = (1,2,3...n)[/mm]
>  [mm]B= (1,2,3...m)[/mm]
>  Ich hab schon im vorigen
> Beispiel gezeigt dass es [mm]m^n[/mm] Abbildungen gibt und
> [mm]m*(m-1)...(m-n+1) injektiv sind[/mm].
>  
> Ich muss ja mal schauen wieviele surjektive Abbidlungen es
> gibt. dass heißt jedes element von B muss mindestens
> einmal (kann aber auch mehrmals) getroffen werden
>  n muss also größer gleich m sein
>  Bijektiv heißt, dass jedes Element von B wird
> einmal(nicht mehr oder weniger) getroffen.
>  bei bijektiv ist m=n

jupp
  

> wieviele Abbildungen sind bijektiv?
>  1...-> n Möglichkeiten abzubilden

>  2...-> n-1 Möglichkeiten abzubilden

>  n...-> (n-n+1) Möglichkeiten abzubilden

>  
> [mm]n * (n-1) * ...*(1) = n![/mm]
>  
> 1.Frage stimm das?

ja

>  2.Frage, Ist hier nicht gefragt (oder täusche ich mich)
> aber wie komme ich nur auf die surjektiven Abbildungen'?

Das ist hier sicher aus gutem Grund nicht gefragt, denn das ist etwas komplizierter.
Dafür nimmt man normalerweise die Stirlinzahlen, guckst du hier:
http://de.wikipedia.org/wiki/Stirling-Zahl#Stirling-Zahlen_zweiter_Art

Wie du da sehen kannst ist die Formel nicht ganz so schön wie zB die für die Binomialkoeffizienten, weswegen wohl nicht erwartet wird, dass du da allein drauf kommst.^^

lg

Schadow


Bezug
                
Bezug
Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 So 23.10.2011
Autor: quasimo

ah, okay. dann lass ich das mal für den Anfang!
tausend-Danke-fürs-anschauen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]