Abbildungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Von der linearen Abbildung h: R2 -> R2 wissen wir
h( [mm] \vektor{1 \\ -1} [/mm] ) = [mm] \vektor{0 \\ 2} [/mm] und h( [mm] \vektor{-2 \\ 1} [/mm] ) = [mm] \vektor{1 \\ 7} [/mm] .
Bestimmen Sie die Abbildungsmatrix von h bezüglich
(a) Basen B,C sodass [mm] S_{h}(B,C) [/mm] möglichst einfach ist;
(b) der kanonischen Basis, also [mm] S_{h}(E,E), [/mm] mit E =( [mm] \vektor{1 \\ 0}, \vektor{0 \\ 1} [/mm] ). |
(a) Habe die Abbildungsmatrix mittels eines Gleichungssystems erstellt.
[mm] \pmat{ -1 & -9 \\ -1 & -11 }
[/mm]
bei (b)
[mm] \pmat{ -1 & -9 \\ -1 & -11 } [/mm] * [mm] \vektor{1 \\ 0} [/mm] = [mm] \vektor{-1 \\ -9}, [/mm] ???
Stimmt a so?
was muss ich bei b eigentlich tun, mein Ansatz ist ja irgendwie sinnlos, da sich ja nichts verändert...
Bitte um HILFE!!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:13 Mi 11.10.2017 | Autor: | fred97 |
> Von der linearen Abbildung h: R2 -> R2 wissen wir
> h( [mm]\vektor{1 \\ -1}[/mm] ) = [mm]\vektor{0 \\ 2}[/mm] und h( [mm]\vektor{-2 \\ 1}[/mm]
> ) = [mm]\vektor{1 \\ 7}[/mm] .
>
> Bestimmen Sie die Abbildungsmatrix von h bezüglich
> (a) Basen B,C sodass [mm]S_{h}(B,C)[/mm] möglichst einfach ist;
> (b) der kanonischen Basis, also [mm]S_{h}(E,E),[/mm] mit E =(
> [mm]\vektor{1 \\ 0}, \vektor{0 \\ 1}[/mm] ).
> (a) Habe die Abbildungsmatrix mittels eines
> Gleichungssystems erstellt.
>
> [mm]\pmat{ -1 & -9 \\ -1 & -11 }[/mm]
>
> bei (b)
>
> [mm]\pmat{ -1 & -9 \\ -1 & -11 }[/mm] * [mm]\vektor{1 \\ 0}[/mm] = [mm]\vektor{-1 \\ -9},[/mm]
> ???
>
> Stimmt a so?
Was hast Du denn als B und C gewählt ??
> was muss ich bei b eigentlich tun, mein Ansatz ist ja
> irgendwie sinnlos, da sich ja nichts verändert...
> Bitte um HILFE!!!
HILFE: ich zeig Dir mal, wie das geht (Bauanleitúng). Seien [mm] B=\{b_1,b_2\} [/mm] und [mm] C=\{c_1,c_2\} [/mm] Basen des [mm] \IR^2.
[/mm]
Dann gibt es eindeutig bestimmte Zahlen [mm] \alpha_1,\alpha_2 [/mm] , [mm] \beta_1 [/mm] und [mm] \beta_2 [/mm] mit
[mm] h(b_1)=\alpha_1 c_1+\alpha_2 c_2 [/mm] und [mm] h(b_2)=\beta_1 c_1+\beta_2 c_2 [/mm]
Dann ist [mm] S_h(B,C)=\pmat{ \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 }
[/mm]
Zu a): Du sollst B und C so wählen, dass [mm] S_h(B,C) [/mm] "möglichst einfach " wird. Das ist natürlich sehr schwammig, aber ich fordere Dich auf B und C so zu wählen, dass
[mm] S_h(B,C)=\pmat{ 1 & 0 \\ 0 & 1 }
[/mm]
ausfällt.
Ich verrate Dir, dass Du dazu (fast) nix rechnen musst. Du musst Dir nur nochmal die Eigenschaften von h ansehen ! Und obige Bauanleitung.
Zu b): das solltest Du ebenfalls mit obiger Bauanleitung hinbekommen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|