matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisAbg. Unterraum von C[0,1]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Abg. Unterraum von C[0,1]
Abg. Unterraum von C[0,1] < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abg. Unterraum von C[0,1]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:54 Di 17.05.2011
Autor: Salamence

Aufgabe
Sei [mm] X:=\{f\in C[0,1]|f(0)=0\} [/mm] und [mm] Y:=\{f\in X|\int f=0\} [/mm]
a) Zeigen Sie, dass Y ein abgeschlossener Unterraum ist.
b) Zeigen Sie, dass es kein $ [mm] f\in [/mm] X $ gibt mit der Eigenschaft, dass ||f||=1 und $ [mm] ||f-g||\ge1 \forall g\in [/mm] Y $

Hallo!

Also, wie zeig ich erstmal das mit der Abgeschlossenheit? Zeigen, dass das Komplement offen ist? Oder kann man einfach sagen, dass das abgeschlossen ist, weil [mm] \{0\} [/mm] abgeschlossen ist in [mm] \|R [/mm] und die Abbildung $ [mm] f\mapsto\int [/mm] f $ stetig ist?

Wie findet man bei b) so ein g, sodass das kleiner ist als 1? Mmmh....irgendwo wird der maximale Abstand von g und f ja angenommen, da das kompakt ist, dann koennte man g stauchen und wenn sie an der Stelle das gleiche Vorzeichen haben, wuerde es doch hinhauen, wenn aber nicht...kann man dann -g nehmen und es klappt damit? Oder waere dann der Abstand woanders maximal?

        
Bezug
Abg. Unterraum von C[0,1]: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Di 17.05.2011
Autor: fred97

Y ist abgeschlossen  [mm] \gdw [/mm] für jede konvergente Folge [mm] (f_n) [/mm] in Y gehört auch ihr Limes zu Y.

Nimm also eine konvergente Folge [mm] (f_n) [/mm] aus Y her. [mm] (f_n) [/mm] konvergiere gegen f

Beachte: Konvergenz bedeutet Konvergenz bezügl. der Norm ||*|| ( = Maximumsnorm), also gleichmäßige Konvergenz auf [0,1]

[mm] (f_n) [/mm] konvergiert also gleichmäßig auf [0,1] gegen f.

Dann ist  [mm] \integral_{0}^{1}{f_n(x) dx}= [/mm] ???   für jedes n

Was treibt andererseits die Folge  [mm] (\integral_{0}^{1}{f_n(x) dx}) [/mm]  in Bezug auf  [mm] \integral_{0}^{1}{f(x) dx} [/mm] ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]