matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikAbgeschl. unter Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Prädikatenlogik" - Abgeschl. unter Substitution
Abgeschl. unter Substitution < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschl. unter Substitution: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:30 Sa 09.08.2014
Autor: Avinu

Aufgabe
Sei [mm] \tau [/mm] = [mm] \{0, 1, f, R\}, [/mm] wobei 0,1 zwei Konstanten sind, f ein 2-stelliges Funktionssymbol, und R ein 1-stelliges Relationssymbol. Wir betrachten die folgende Menge T von atomaren Sätzen:

T := [mm] \{R0\} \cup \{Rft0~|~t~\tau-Term \} \cup \{ fft_1t_2t_3 = ft_1ft_2t_3~|~t_1, t_2, t_3~\tau-Terme \} [/mm]

Sei [mm] \Sigma [/mm] die kleinste Menge, die T enthält und unter Substitution abgeschlossen ist. Beschreiben Sie [mm] \Sigma. [/mm]


Hallo zusammen,

ich habe die Lösung hier vor mir liegen, verstehe aber nicht, wie man dort hin kommt.

Wir haben definiert:

Ein Grundterm ist ein Term in dem keine Variablen vorkommen.

Eine [mm] \tau-Formel [/mm] ist atomar, wenn sie von der Form [mm] t_1 [/mm] = [mm] t_2 [/mm] oder [mm] Pt_1...t_n [/mm] ist mit [mm] $t_1, [/mm] ..., [mm] t_n$ $\tau$-Terme [/mm] und P [mm] \in \tau [/mm] ein n-stelliges Relationssymbol.

Ein [mm] \tau-Satz [/mm] ist eine [mm] \tau-Formel [/mm] ohne freie Variablen.

Eine Menge [mm] \Sigma [/mm] von atomaren Sätzen iun [mm] FO(\tau) [/mm] ist abgeschlossen unter Substitution, wenn für jede atomare Formel [mm] \psi(x) [/mm] und alle Grundterme t,t' [mm] \in T(\tau) [/mm] gilt:

(i) [mm] \Sigma [/mm] enthält die Gleichung t = t'
(ii) Wenn t = t' und [mm] \psi(t) [/mm] zu [mm] \Sigma [/mm] gehören, dann auch [mm] \psi(t') [/mm]

Die Grundterme im Falle dieser Aufgabe sind doch dann 0, 1, f00, f01, f10, f11, f0f00, f0f01, usw. richtig? Dann müsste, nach unserer Definition aber doch z.B. auch gelten 0=1 [mm] \in \Sigma [/mm] oder f00 = f01 [mm] \in \Sigma. [/mm] Laut Lösung ist dies aber nicht der Fall. Hier ist nur dann t=t' [mm] \in \Sigma, [/mm] wenn die gleichen Terme in gleicher Reihenfolge auftauchen. Also z.B. [mm] fft_1t_2t_3 [/mm] = [mm] ft_1ft_2t_3. [/mm]

Wo ist hier mein Fehler?

Schonmal vielen Dank für die Hilfe.

Viele Grüße,
Avinu

        
Bezug
Abgeschl. unter Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Do 14.08.2014
Autor: tobit09

Hallo Avinu!


> Eine Menge [mm]\Sigma[/mm] von atomaren Sätzen iun [mm]FO(\tau)[/mm] ist
> abgeschlossen unter Substitution, wenn für jede atomare
> Formel [mm]\psi(x)[/mm] und alle Grundterme t,t' [mm]\in T(\tau)[/mm] gilt:
>  
> (i) [mm]\Sigma[/mm] enthält die Gleichung t = t'
>  (ii) Wenn t = t' und [mm]\psi(t)[/mm] zu [mm]\Sigma[/mm] gehören, dann auch
> [mm]\psi(t')[/mm]

Bisher kannte ich diesen Begriff der Abgeschlossenheit unter Substitution nicht. Eine Internet-Recherche ergab jedoch, dass es wohl bei i) t=t, nicht etwa t=t' heißen muss.

Das sollte dein von der Musterlösung abweichendes Ergebnis erklären.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]