matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 So 15.10.2006
Autor: herzmelli

Aufgabe
[mm] f(x)=\bruch{lnx+4}{x} [/mm]

5) Ableitungen
f'(x) [mm] =\bruch{(1/x*x)-(1*lnx+4)}{x^2} [/mm]  =  [mm] \bruch{1-lnx-4}{x^2} [/mm]

        [mm] =\bruch{-lnx-3}{x^2} [/mm]


[mm] f''(x)=\bruch{(-1/x*x^2)-(2x*-lnx-3)}{x^4} [/mm]

Hi Ihr Lieben.Bei der zweiten Ableitung hab ich ein Problem,ich weiss nicht
wie ich es am besten zusammenfassen kann.Wie mach ich es am besten.
Was mach ich als erstes?Herzlichen Dank.Lg


        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 So 15.10.2006
Autor: Zwerglein

Hi, herzmelli,

> [mm]f(x)=\bruch{lnx+4}{x}[/mm]
>  
> 5) Ableitungen
>   f'(x) [mm]=\bruch{(1/x*x)-(1*lnx+4)}{x^2}[/mm]  =  
> [mm]\bruch{1-lnx-4}{x^2}[/mm]

Der 1er hätte eigentlich vor die Klammer gehört,
also:  f'(x) [mm] =\bruch{(1/x*x)-1*(lnx+4)}{x^2} [/mm]
aber hier macht's für das Ergebnis nichts aus!
  

> [mm]=\bruch{-lnx-3}{x^2}[/mm]

OK!  

> [mm]f''(x)=\bruch{(-1/x*x^2)-(2x*-lnx-3)}{x^4}[/mm]

Hier ist die Sache mit der Klammer schon wichtiger!

[mm] f''(x)=\bruch{(-1/x*x^2) - 2x*(-lnx-3)}{x^4} [/mm]

Nun erst mal im Zähler kürzen:

f''(x) = [mm] \bruch{-x - 2x*(-lnx-3)}{x^4} [/mm]

Nun das x ausklammern:

f''(x) = [mm] \bruch{x*(-1 - 2*(-lnx-3))}{x^4} [/mm]

Nun Kürzen von x aus Zähler und Nenner:

f''(x) = [mm] \bruch{-1 - 2*(-lnx-3)}{x^{3}} [/mm]

Zähler vereinfachen:

f''(x) = [mm] \bruch{ 2*lnx +5}{x^{3}} [/mm]

Fertig!

mfG!
Zwerglein


Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 So 15.10.2006
Autor: herzmelli

Hi Zwerglein,

Das hast du echt super erklärt,habe es so verstanden.
Versuche grad die 3 Ableitung zu machen.
Hättest du Zeit sie gleich noch zu kontrollieren???

Herzlichen Dank

Bezug
                        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 So 15.10.2006
Autor: herzmelli

f'''(x)= [mm] \bruch{(2/x*x^3)-3x^2*(5+2*lnx)}{x^6} [/mm]

       [mm] =\bruch{2x^2-15x^2-6x^2*lnx}{x^6} [/mm]

       [mm] =\bruch{x^2*(2-15-6*lnx)}{x^6} [/mm]

       [mm] =\bruch{13-6*lnx}{x^4} [/mm]

Ich hoffe es ist richtig!!!!!

Bezug
                                
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 So 15.10.2006
Autor: DesterX

Hallo!
Da steckt noch ein kleiner Rechenfehler:

       [mm] =\bruch{x^2\cdot{}(2-15-6\cdot{}lnx)}{x^6} [/mm]
       [mm] =\bruch{ -13 -6\cdot{}lnx}{x^4} [/mm]
Also: -13
Ansonsten: [ok]

Viele Grüße

Bezug
                                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 So 15.10.2006
Autor: herzmelli

Danke Dir du hast natürlich recht.


Super Danke!!!!!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]