matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Korrektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:43 Do 06.12.2007
Autor: Mandy_90

Halo,^^
So hab jetzt mal ein paar Aufgaben gerechnet,weiß aber net ob die stimmen.
Also als 1.sollte man dei Gleichung der Tangente an den Graphen der Funktion [mm] f(x)=\bruch{1}{x^{2}} [/mm] im Punkt p (0.5/4) bestimmen.
So und ich hab da dann die Ableitung  [mm] -\bruch{2}{x_0^3} [/mm] rausbekommen.Dann hab ich den Punkte P (0.5/4) eingesetzt und hatte für f(x) -16 raus.

So als 2.Aufgabe sollte man die Steigung von [mm] f(x)=-x^{2}+4 [/mm] bei [mm] x_0=1 [/mm] bestimmen.Da hab ich auch die Ableitung gemacht und hab [mm] \bruch{x_0^{4}}{x-x_0} [/mm] rausbekommen.

3.Aufgabe:man sollte [mm] \limes_{n\rightarrow\infty} \bruch{f(x)}{g(x)} [/mm]  berechnen.So da hab ich - [mm] \bruch{(-f(x))+(f(x_0)}{(-g(x))+(g(x_0))}. [/mm]

Und als letzte Aufgabe:Zeigen sie ,dass sich die Tangenten in den Schnittpunkten der Graphen von [mm] f(x)=-x^{2}+4 [/mm]  und [mm] g(x)=x^{2}-5x+6 [/mm] unter den gleichen Winkeln schneiden.

So da hab ich die Grapen nun gezeichnet,aber ich weiß leider net wie man dei Ableitugn dazu bildet.Kann mir da jemand vieleicht nen Ansatz geben oder erklären wie es geht?

dankeschön^^



        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:24 Fr 07.12.2007
Autor: defjam123

welche funktion(graph) willst du denn jetzt ableiten?

Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:01 Fr 07.12.2007
Autor: defjam123

also zu 1)
Die Steigung bekommst du mit der Ableitung wie du schon richtig verstanden hast.Der Graph hat ja die Funktion [mm] f(x)=\bruch{1}{x²} [/mm]
Um jetzt abzuleiten würd ich anders hinschreiben, und zwar: [mm] x^{-2} [/mm]
Die Ableitung wäre [mm] dann:f'(x)=-2x^{-3}. [/mm] also ist deine Ableitung schonmal richtig!
Dann setzt du den xwert ein und bekommst die Steigung.
Diese wäre dann wie du geschrieben hast -16.
Um jetzt die Gleichung für die Tangente raus zubekommen, brauchen wir zuerstmal die algemeine Gleichung für eine Tangente.
y=mx+n
Wir müssen nur noch den Punkt und die Steigung einsetzten und bekommen n raus. Dann können wie die Gleichung für die Tangente stellen

zu 2)
Ich weiß nicht wie du auf deine Ableitung gekommen bist?
Die Ableitung von [mm] -x^{2}+4 [/mm] ist nämlich f'(x)=-2x. Jetzt nur noch die x stelle in die Ableitung einsetzten und du hast die Steigung.

jetzt geh ich pennen
Gruss



Bezug
        
Bezug
Ableitung: 3. Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Fr 07.12.2007
Autor: Loddar

Hallo Mandy!


Hier solltest Du mal bitte die vollständige und korrekte Aufgabenstellung posten.


Gruß
Loddar


Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 08.12.2007
Autor: Mandy_90

Ja, das wollte ich eigentlich auch machen,aber ich komm hier mit den zeichen ent so klar,ich komm ganz durcheinander,wenn ich einen etwas größeren Bruhc schreiben muss.Da geht bei mir alles durcheinander deshalb ich nur das Ergebnis hingeschrieben.

Bezug
        
Bezug
Ableitung: letzte Aufgabe
Status: (Antwort) fertig Status 
Datum: 19:11 Fr 07.12.2007
Autor: Loddar

Hallo Mandy!



> Und als letzte Aufgabe:Zeigen sie ,dass sich die Tangenten
> in den Schnittpunkten der Graphen von [mm]f(x)=-x^{2}+4[/mm]  und
> [mm]g(x)=x^{2}-5x+6[/mm] unter den gleichen Winkeln schneiden.

Die Ableitungen dieser beiden Funktionen kannst Du jeweils mit der MBPotenzregel bzw. MBSummenregel bilden.

Dann benötigst Du auch die Schnittstellen der beiden Funktionen. Diese erhältst Du, indem Du die beiden Funktionsvorschriften gleichsetzt:
[mm] $$-x^{2}+4 [/mm] \ = \ [mm] x^{2}-5x+6$$ [/mm]
Nun nach $x \ = \ ...$ auflösen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]