matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung Differentialquotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung Differentialquotient
Ableitung Differentialquotient < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Differentialquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Sa 05.04.2008
Autor: abi2007LK

Hallo,

folgende Aufgabe:

Sei f : [mm] \IR \to \IR [/mm] gegenen durch:

f(x) = [mm] \begin{cases} e^{-(log(|x|))^2}, & \mbox{für } x \not= 0 \\ 0, & \mbox{für } x = 0 \end{cases} [/mm]

Berechnen Sie die Ableitung von f an jeder Stelle x [mm] \in \IR. [/mm]

So - für x [mm] \not= [/mm] 0 ist das ja recht einfach.
f'(x) = [mm] e^{-(log(|x|))^2} [/mm] (-2 log(|x|) [mm] \frac{1}{x}) [/mm]

Für x = 0 wird in der Musterlösung etwas getan, was ich nicht nachvollziehen kann. Hier die Musterlösung:

Für x = 0: Es gilt für h [mm] \not= [/mm] 0: [mm] |\frac{f(h)-f(0)}{h}| [/mm] = [mm] \frac{1}{|h|} e^{-(log(|x|))^2} [/mm]

Soweit okay und alles verstanden. Aber jetzt kommts:

Setzt man |h| = [mm] e^{-y}, [/mm] so erhält man:

[mm] \limes_{h \rightarrow 0} |\frac{f(h)-f(0)}{h}| [/mm] = [mm] \limes_{y \rightarrow \infty} e^{y-y^2} [/mm] = 0, also f'(0) = 0.

Okay. Ich habe es versucht zu verstehen. Es wurde ja einerseits überprüft, ob f(x) für x = 0 überhaupt differenzierbar ist und andererseits gleich die Ableitung bestimmt. In meiner Formelsammlung steht dazu:

f heißt an der Stelle [mm] x_0 [/mm] differenzierbar, falls

[mm] \limes_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}{h} [/mm] := [mm] f'(x_0) [/mm] existiert.

In der Musterlösung wurde |h| = [mm] e^{-y} [/mm] gesetzt. Darf ich also für h immer einen beliebigen Ausdurck einsetzen, falls ich dann auch gleichzeitig (ggf.) die Grenzwertbetrachtung so abändere, dass der Ausdruck, der h ersetzt auch gegen Null geht?

In der Musterlösung wurde |h| = [mm] e^{-y} [/mm] gesetzt und gleichzeitig y gegen [mm] \infty [/mm] gehen lassen, sodass [mm] e^{-y} [/mm] - wie ursprünglich |h| gegen 0 geht.

Richtig?



        
Bezug
Ableitung Differentialquotient: richtig verstanden!
Status: (Antwort) fertig Status 
Datum: 14:44 Sa 05.04.2008
Autor: Loddar

Hallo abi2007LK!


Das hast Du genau richtig verstanden! [ok]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]