matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung Summenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Ableitung Summenfunktion
Ableitung Summenfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Summenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Sa 10.11.2007
Autor: JOHATOLO

Aufgabe
[mm] g(\tau) [/mm] = [mm] \summe_{i=1}^{n}(|x(t)-y(t+\tau)| [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi,

weiß jemand von euch die allgemeine Ableitung für die obengenannte Formel?
Danke für eure Bemühungen.

Gruss
Johannes

        
Bezug
Ableitung Summenfunktion: Aufgabenstellung richtig?
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 10.11.2007
Autor: beutelsbacher

Hi,
ist die Aufgabenstellung so wirklich richtig?
Wenn ja, dann ist die Summe unabhängig von i, also kannst du die auch schreiben als n*... . Bleibt noch dann die Ableitung: Die Betragsfunktion ist in 0 nicht differenzierbar. Also Fallunterscheidung x(t) > [mm] y(t+\tau) [/mm] und x(t) < y(t [mm] +\tau). [/mm] Bleibt also dann als allgemeine Ableitung [mm] ny'(t+\tau) [/mm] bzw. [mm] -ny'(t+\tau), [/mm] wennsch mich grad net täusche.
Gruß
Sash

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]