matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ableitung bestimmen - Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Ableitung bestimmen - Funktion
Ableitung bestimmen - Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung bestimmen - Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:58 Fr 03.11.2006
Autor: JanaSK

Hallo,

ich habe eine Frage und vielleicht kann mir jemand dabei weiterhelfen. Ich soll von der Funktion "G(x) = -4 ABS(x-5) + 25"

(ABS steht für Betragswert)

den Extremwert (Maximum) bestimmen.

Ich weiß, dass ich dafür die erste Ableitung dieser Funktion bilden muss. Aber leider weiß ich nicht wie ich diese bilden kann (wegen dem Betragswert). Als Lösung soll herauskommen x = 5 und y = 25.

Kann mir da jemand weiterhelfen? :-)

Vielen lieben Dank für eure Hilfe!

Gruß, JanaSK

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
www.matheboard.de


        
Bezug
Ableitung bestimmen - Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Fr 03.11.2006
Autor: JanaSK

Jemand hat mir aus dem Forum matheboard.de als Antwort geschrieben:

"Mache eine Fallunterscheidung x > 5 und x < 5."

Aber wie mache ich das?

Bezug
                
Bezug
Ableitung bestimmen - Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Fr 03.11.2006
Autor: Leopold_Gast

Die Methode, mit der Ableitung das Extremum zu bestimmen, funktioniert nur mit differenzierbaren Funktionen. Jetzt ist aber gerade die Betragsfunktion an ihrer Minimalstelle nicht differenzierbar. Du solltest daher hier anders vorgehen.

Du kannst es so machen, wie vorgeschlagen:

Für [mm]x \geq 5[/mm] darfst du [mm]\left| x - 5 \right| = x - 5[/mm] schreiben und für [mm]x < 5[/mm] dann [mm]\left| x - 5 \right| = - (x - 5) = -x + 5[/mm]

Du erhältst so eine Darstellung von [mm]f[/mm] mit Hilfe stückweiser linearer Funktionen.

Ich möchte dir aber eine Alternative vorschlagen:

[mm]f_1(x) = \left| x \right|[/mm]

[mm]f_2(x) = \left| x - 5 \right|[/mm]

[mm]f_3(x) = 4 \cdot \left| x - 5 \right|[/mm]

[mm]f_4(x) = - 4 \cdot \left| x - 5 \right|[/mm]

[mm]f_5(x) = - 4 \cdot \left| x - 5 \right| + 25[/mm]

Hinter der schrittweisen Abänderung des Terms steckt immer eine kleine geometrische Veränderung des Funktionsgraphen. Du solltest dir zu jeder der Funktionen eine Skizze erstellen. Mit der Skizze von [mm]f_5[/mm] erklärt sich dann alles.

Bezug
                        
Bezug
Ableitung bestimmen - Funktion: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Fr 03.11.2006
Autor: JanaSK

Hallo Leopold_Gast,

vielen lieben Dank für deine Hilfe! :-)

Für x>=5 ist die Extremstelle somit 5.

Gruß, JanaSK



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]