matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung e-funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Ableitung e-funktion
Ableitung e-funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mo 18.04.2005
Autor: OnkelHotte

Hi,

ich benötige die Ableitung von [mm] 4*x^2*e^{x+1} [/mm]

danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 18.04.2005
Autor: Sigrid

Hallo OnkelHotte
[willkommenmr]

> Hi,
>  
> ich benötige die Ableitung von [mm]4*x^2*e^{x+1}[/mm]

Schade, dass du keine eigenen Ansätze angegeben hast. so weiß ich nicht, wo dein Problem ist. Es entspricht nämlich überhaupt nicht den Forenregeln, wenn ich dir einfach das Ergebnis angebe.
Also hier ein paar Tips:
Die Ableitung bekommst du mit der Produktregel.
[mm] f(x) = u(x) \cdot v(x)\ \Rightarrow\ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) [/mm]
Dazu wählst du
[mm]u(x) = 4*x^2[/mm]  und [mm] v(x) = e^{x+1}[/mm]
Die Ableitungen von u und v sind dir sicher bekannt.

Dann braucht du nur noch einzusetzen und zusammenzufassen.

Kommst du jetzt klar?

Gruß Sigrid



>  
> danke
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Ableitung e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mo 18.04.2005
Autor: OnkelHotte

Entschuldigung, aber ich hab eher Schwierigkeiten mit der verketteten E-Funktion. e^(x+1) Wie leitet man die genau ab. Danke nochmals...

Bezug
                        
Bezug
Ableitung e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 18.04.2005
Autor: Julius

Hallo!

Im Allgemein lautet ja die Kettenregel:

$(g [mm] \circ [/mm] f)'(x) = g'(f(x)) [mm] \cdot [/mm] f'(x)$.

Man bildet also die Ableitung der äußeren Funktion (und setzt da anschließend den Funktionswert der inneren Funktion ein) und multipliziert das ganze mit der Ableitung der inneren Funktion an der entsprechenden Stelle.

So gilt etwa mit $h:= [mm] \cos(x^2)$, [/mm] wobei $h=(g [mm] \circ [/mm] f)(x)$ mit [mm] $g(x)=\cos(x)$ [/mm] und [mm] $f(x)=x^2$: [/mm]

$g'(x) = [mm] -\sin(x)$, [/mm]

also:

$g'(f(x)) = [mm] -\sin\left(x^2\right)$ [/mm]

und

$f'(x)=2x$,

also:

$h'(x) = g'(f(x)) [mm] \cdot [/mm] f'(x) = - [mm] \sin\left(x^2 \right) \cdot [/mm] 2x$.

Bei den Verkettungen mit der Exponentialfunktion vereinfacht sich das ganze wegen [mm] $(e^x)'=e^x$ [/mm] wie folgt:

Ist [mm] $h=e^{f(x)}$, [/mm] also: $h(x) = (g [mm] \circ [/mm] f)(x)$ mit [mm] $g(x)=e^x$, [/mm] so gilt:

$g'(x) = [mm] e^x$, [/mm]

also:

$g'(f(x)) = [mm] e^{f(x)}$ [/mm]

und daher:

$h'(x) = [mm] e^{f(x)} \cdot [/mm] f'(x) = h(x) [mm] \cdot [/mm] f'(x)$.

Beispiel:

[mm] $\left(e^{x^2} \right)' [/mm] = [mm] e^{x^2} \cdot [/mm] 2x$.

Was kommt also bei deiner Aufgabe raus?

Viele Grüße
Julius

Bezug
                                
Bezug
Ableitung e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Di 19.04.2005
Autor: OnkelHotte

ahhh, danke. müsste also e^(x+1) bleiben, da die Ableitung von (x+1) 1 ist. Und das mal der e-funktion bleibt die gleiche e-funktion, nicht wahr?

Bezug
                                        
Bezug
Ableitung e-funktion: Stimmt genau!
Status: (Antwort) fertig Status 
Datum: 09:59 Di 19.04.2005
Autor: Loddar

Moin OnkelHotte!

> müsste also e^(x+1) bleiben, da die Ableitung
> von (x+1) 1 ist. Und das mal der e-funktion bleibt die
> gleiche e-funktion, nicht wahr?

[daumenhoch] Ich sehe, Du hast es verstanden, oder?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]