matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung eine e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Ableitung eine e-Funktion
Ableitung eine e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung eine e-Funktion: Korrektur?
Status: (Frage) beantwortet Status 
Datum: 20:17 Di 12.12.2006
Autor: Greenhorn

Aufgabe
Wie lautet die erste Ableitung von f(x)=2*e^(0,5x-1)?

Hallo!
Ich büffele gerade für die morgige Matheklausur und habe beim Ableiten der obigen Funktion Schwierigkeiten.
Deshalb wäre es nett, wenn jemand mal über meine Lösung schauen könnte, um diese zu bestätigen oder zu korrigieren.

Meine Lösungsidee:

Ableiten mit der Produktregel und der Kettenregel.
Mein Problem ist, dass ich  nicht genau weiß, was mit der 2 passiert... Die Ableitung davon wäre ja 0 und somit würde der eine Teil der Produktregel insgesamt 0... Stimmt das?

f'(x) = 0 * e^(0,5x-1) + 2 * 0,5 * e^(0,5x-1) = e^(0,5x-1)

Über eine Antwort würde ich mich sehr freuen! Danke schonmal!

Greenhorn

P.S.: Es tut mir leid, dass ich die Rechnung nicht als Formel geschrieben habe, aber ich habs versucht und einfach nicht hinbekommen...


P.P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung eine e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Di 12.12.2006
Autor: Stefan-auchLotti


> Wie lautet die erste Ableitung von f(x)=2*e^(0,5x-1)?
>  Hallo!
>  Ich büffele gerade für die morgige Matheklausur und habe
> beim Ableiten der obigen Funktion Schwierigkeiten.
>  Deshalb wäre es nett, wenn jemand mal über meine Lösung
> schauen könnte, um diese zu bestätigen oder zu
> korrigieren.
>  
> Meine Lösungsidee:
>  
> Ableiten mit der Produktregel und der Kettenregel.
>  Mein Problem ist, dass ich  nicht genau weiß, was mit der
> 2 passiert... Die Ableitung davon wäre ja 0 und somit würde
> der eine Teil der Produktregel insgesamt 0... Stimmt das?
>  
> f'(x) = 0 * e^(0,5x-1) + 2 * 0,5 * e^(0,5x-1) = e^(0,5x-1)
>  
> Über eine Antwort würde ich mich sehr freuen! Danke
> schonmal!
>  
> Greenhorn
>  
> P.S.: Es tut mir leid, dass ich die Rechnung nicht als
> Formel geschrieben habe, aber ich habs versucht und einfach
> nicht hinbekommen...
>  
>
> P.P.S.: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

[mm] $\rmfamily \text{Ist genau richtig so. Doch du kannst es ein wenig einfacher haben. Bei einem konstanten Vorfaktor}$ [/mm]

[mm] $\rmfamily \text{reicht die Faktorregel (so wie bei }f(x)=3*x^2 \Rightarrow f'(x)=2*3*x\text{ z.B.).}$ [/mm]

[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]



Bezug
        
Bezug
Ableitung eine e-Funktion: Formel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Di 12.12.2006
Autor: ccatt

Hallo,

die Ableitung bei e-Funktionen lautet allgemein:
[mm]f(x) = e^{u(x)}[/mm]
[mm]f'(x) = e^{u(x)} * u'(x)[/mm]

LG ccatt

Bezug
                
Bezug
Ableitung eine e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 12.12.2006
Autor: Greenhorn

Aufgabe
Ableitung von [mm] f(x)=(e^x)^2 [/mm]

Danke für die Antworten!

Jetzt hab ich leider schon wieder ne Funktion, die ich nicht ableiten kann...

oder ist das einfach f(x)= e^2x und somit f'(x)= 2*e^2x ??

aber wann wendet man dann diese andere Regelung an, womit

f'(x) = 2* [mm] (e^x)^1 [/mm] * [mm] e^x [/mm] rausgekommen wär?

Hilfe, ich bin total ratlos!!!

Bezug
                        
Bezug
Ableitung eine e-Funktion: ist dasselbe!
Status: (Antwort) fertig Status 
Datum: 21:28 Di 12.12.2006
Autor: Loddar

Hallo Greenhorn!


Beide Wege sind richtig und führen auch zum selben Ergebnis. Schließlich kannst Du auch [mm] $2*e^x*e^x$ [/mm] gemäß MBPotenzgesetzen zusammenfassen zu:

$... \ = \ [mm] 2*e^{x+x} [/mm] \ = \ [mm] 2*e^{2x}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]