matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung einer Zinsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung einer Zinsfunktion
Ableitung einer Zinsfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Zinsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:38 Di 12.12.2006
Autor: a.ebert

Moin!
Ich habe ein Problem mit der Ableitung einer Zinsfunktion.
Die Stammfunktion lautet:

[mm] K * q^{\bruch{n}{12} }- r * \bruch{q^{\bruch{n}{12}}-1}{q-1} = 0[/mm]

Und zwar will ich den Zinssatz errechnen. Ich benötige quasi q. Dazu wende ich das Newton'sche Näherungsverfahren an. Dabei ist es allerdings nötig, dass ich die Ableitung der Stammfunktion habe.
Jetzt mein Problem! Ich schaff es einfach nicht die Stammfunktion abzuleiten, da mir schon der Ansatz fehlt, wie ich anfangen soll.
Ich hoffe mir kann jemand von euch helfen.

MfG Andy

...Ach ja...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Ableitung einer Zinsfunktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 08:47 Di 12.12.2006
Autor: Loddar

Guten Morgen Andy!


Gibt es dafür nicht schon fertige Formeln? [kopfkratz3]


Aber zu Deiner Frage. Denn ersten Teil [mm] $K*q^{\bruch{n}{12}}$ [/mm] kannst Du ganz einfach mit der MBPotenzregel ableiten.

Für den Bruch dagegen benötigst Du die MBQuotientenregel mit $u \ = \ [mm] q^{\bruch{n}{12}}-1$ [/mm]  und  $v \ = \ q-1$ .


Gruß
Loddar


Bezug
                
Bezug
Ableitung einer Zinsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Di 12.12.2006
Autor: a.ebert

So!!! is zwar etwas lang geworden, aber ich hoff mal meine Ableitung stimmt jetzt...
[mm]q^{\bruch{n}{12}}+ K * \bruch{n}{12} * q^{\bruch{n-1}{12}} - \bruch{(q^{\bruch{n}{12}}-1)}{(q-1)} + r * \bruch{(q^{\bruch{n}{12}}-1)-(\bruch{n}{12} * q^{\bruch{n-1}{12}}) + (q-1)}{(q-1)^2} [/mm]

wäre nett wenn ihr mal drüber schauen könntet und mir sagt ob ich recht hab oder nicht!

MfG Andy



Bezug
                        
Bezug
Ableitung einer Zinsfunktion: Korrekturen
Status: (Antwort) fertig Status 
Datum: 09:14 Fr 15.12.2006
Autor: Loddar

Hallo Andy!


Hoffentlich ist es inzwischen nicht zu spät ...


Leider wendest Du sowohl die MBFaktorregel als auch die MBPotenzregel falsch an:

Aus [mm] $K*q^{\bruch{n}{12}}$ [/mm] wird nämlich:

-  $K_$ bleibt als konstanter Faktor erhalten

-  Du musst beim Ableiten den ganzen Exponenten (= Hochzahl) um $1_$ erniedrigen.


[mm] $\left( \ \blue{K}*q^{\bruch{n}{12}} \ \right)' [/mm] \ = \ [mm] \blue{K}*\bruch{n}{12}*q^{\bruch{n}{12} \ \red{-1}} [/mm] \ = \ [mm] K*\bruch{n}{12}*q^{-\bruch{11}{12}*n}$ [/mm]


Ebenso dann auch bei den anderen Termen anwenden.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]