Ableitung eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die Ableitung der Funktion [mm] f:\IR ->\IR [/mm] mit
f(x) = [mm] \integral_{x^2}^{x^4}{e^{x+t^2}dt} [/mm] |
Hi,
da wir so eine ähnliche Aufgabe gerechnet haben, weiß ich das ich die Integralsgrenzen als Funktionen auffassen muss und dann das Integral als Komposition aufstellen:
Sei h(t) = [mm] e^{x+t^2}, [/mm] da h stetig ist gilt [mm] \exist [/mm] H(x) = [mm] \integral_{0}^{x}{e^{x+t^2} dt} [/mm]
sei g(x) = [mm] x^4 [/mm] so gilt:
H(g(x)) = [mm] \integral_{0}^{x^4}{e^{x+t^2} dt} [/mm]
hier schon mal die Frage ob das stimmt, weil ich ja in der Fkt. [mm] e^{x+t^2} [/mm] auch ein x habe, was eigentlich dann auch zu [mm] x^4 [/mm] würde,oder? Ansonsten würde ich so weiter machen:
H(g(x)) = (H°g)(x) => (H°g)'(x) = H'(g(x))g'(x) = (h°g)(x)g'(x), was ich dann ja aus rechnen könnte.
Das selbe würde ich dann für [mm] x^2(untere [/mm] Integralsgrenze) machen und dieses von dem 1. Ergebnis abziehen.
Mein Hauptproblem ist grad, wie das mit dem x in [mm] e^{x+t^2} [/mm] im Integral H(g(x)) = [mm] \integral_{0}^{x^4}{e^{x+t^2} dt} [/mm] mache
Snafu
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:00 Di 29.06.2010 | Autor: | rainerS |
Hallo!
> Bestimmen Sie die Ableitung der Funktion [mm]f:\IR ->\IR[/mm] mit
> f(x) = [mm]\integral_{x^2}^{x^4}{e^{x+t^2}dt}[/mm]
> Hi,
>
> da wir so eine ähnliche Aufgabe gerechnet haben, weiß ich
> das ich die Integralsgrenzen als Funktionen auffassen muss
> und dann das Integral als Komposition aufstellen:
> Sei h(t) = [mm]e^{x+t^2},[/mm] da h stetig ist gilt [mm]\exist[/mm] H(x) =
> [mm]\integral_{0}^{x}{e^{x+t^2} dt}[/mm]
> sei g(x) = [mm]x^4[/mm] so gilt:
> H(g(x)) = [mm]\integral_{0}^{x^4}{e^{x+t^2} dt}[/mm]
> hier schon mal die Frage ob das stimmt, weil ich ja in der
> Fkt. [mm]e^{x+t^2}[/mm] auch ein x habe, was eigentlich dann auch zu
> [mm]x^4[/mm] würde,oder? Ansonsten würde ich so weiter machen:
> H(g(x)) = (H°g)(x) => (H°g)'(x) = H'(g(x))g'(x) =
> (h°g)(x)g'(x), was ich dann ja aus rechnen könnte.
> Das selbe würde ich dann für [mm]x^2(untere[/mm] Integralsgrenze)
> machen und dieses von dem 1. Ergebnis abziehen.
>
> Mein Hauptproblem ist grad, wie das mit dem x in [mm]e^{x+t^2}[/mm]
> im Integral H(g(x)) = [mm]\integral_{0}^{x^4}{e^{x+t^2} dt}[/mm]
> mache
Im vorliegenden Fall ist das ganz einfach, da [mm] $e^{x+t^2}=e^x*e^t^2$ [/mm] ist und du den ersten Faktor vor das Integral ziehen kannst.
Im allgemeinen Fall gilt die Leibnizregel für Parameterintegrale.
Viele Grüße
Rainer
|
|
|
|
|
Hi,
da wir das Parameterintegral nach Leibniz nicht hatten, bezweifle ich, dass ich die Formel einfach benutzen kann.
Aber mit deinem Tipp ich ich doch sagen:
f(x) = [mm] \integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt} [/mm] , mit F(x) = [mm] e^x\integral_{0}^{x}{e^{t^2} dt},g_1(x)=x^2,g_2(x) [/mm] = [mm] x^4
[/mm]
= [mm] F(g_2(x)) [/mm] - [mm] F(g_1(x)) [/mm] , jedoch habe ich hier immer noch das Problem, dass z.b. [mm] F(g_2(x)) [/mm] = [mm] e^{x^4}\integral_{0}^{x^4}{e^{t^2} dt} [/mm] und somit die Potenz beim Vorfaktor wieder nicht stimmt?
Snafu
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:28 Di 29.06.2010 | Autor: | rainerS |
Hallo!
> Hi,
>
> da wir das Parameterintegral nach Leibniz nicht hatten,
> bezweifle ich, dass ich die Formel einfach benutzen kann.
> Aber mit deinem Tipp ich ich doch sagen:
> f(x) = [mm]\integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt}[/mm]
> , mit F(x) = [mm]e^x\integral_{0}^{x}{e^{t^2} dt},g_1(x)=x^2,g_2(x)[/mm]
> = [mm]x^4[/mm]
> = [mm]F(g_2(x))[/mm] - [mm]F(g_1(x))[/mm] , jedoch habe ich hier immer noch
> das Problem, dass z.b. [mm]F(g_2(x))[/mm] =
> [mm]e^{x^4}\integral_{0}^{x^4}{e^{t^2} dt}[/mm] und somit die Potenz
> beim Vorfaktor wieder nicht stimmt?
Nein, du darfst den Vorfaktor nicht in die Stammfunktion reinziehen:
[mm] F(x) := \integral_{0}^{x}{e^{t^2} dt} [/mm]
und
[mm] f(x) = e^x (F(g_2(x))-F(g_1(x))) [/mm]
Viele Grüße
Rainer
|
|
|
|
|
Hi,
somit hätte ich:
f(x) = [mm] \integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt}
[/mm]
Sei F(x) := [mm] \integral_{0}^{x}{e^{t^2} dt} [/mm] , F'(x) = [mm] e^{t^2}
[/mm]
[mm] g_1(x) [/mm] = [mm] x^4 [/mm] , g'(x) = [mm] 4x^3
[/mm]
[mm] g_2(x) [/mm] = [mm] x^2 [/mm] , g'(x) = 2x
=> f(x) = [mm] e^x(F(g_1(x)) -F(g_2(x))) [/mm]
=> f'(x) = [mm] e^x(F(g_1(x)) -F(g_2(x))) [/mm] + [mm] e^x(F'(g_1(x))g_1'(x) -F'(g_2(x))g_2'(x)) [/mm]
= f(x) + [mm] e^x(e^{x^8}4x^3 [/mm] - [mm] e^{x^4}2x)
[/mm]
soweit richtig?
Snafu
|
|
|
|
|
Hallo SnafuBernd,
> Hi,
>
> somit hätte ich:
> f(x) = [mm]\integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt}[/mm]
>
> Sei F(x) := [mm]\integral_{0}^{x}{e^{t^2} dt}[/mm] , F'(x) =
> [mm]e^{t^2}[/mm]
> [mm]g_1(x)[/mm] = [mm]x^4[/mm] , g'(x) = [mm]4x^3[/mm]
> [mm]g_2(x)[/mm] = [mm]x^2[/mm] , g'(x) = 2x
> => f(x) = [mm]e^x(F(g_1(x)) -F(g_2(x)))[/mm]
> => f'(x) = [mm]e^x(F(g_1(x)) -F(g_2(x)))[/mm] +
> [mm]e^x(F'(g_1(x))g_1'(x) -F'(g_2(x))g_2'(x))[/mm]
> = f(x) + [mm]e^x(e^{x^8}4x^3[/mm] - [mm]e^{x^4}2x)[/mm]
>
> soweit richtig?
Ja.
>
> Snafu
Gruss
MathePower
|
|
|
|