matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Ableitung und Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Ableitung und Nullstellen
Ableitung und Nullstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung und Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mi 30.03.2011
Autor: GreenTreeTea

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
Ich brauche dringende Hilfe bei meinen Hausaufgaben.
Eigentlich hab ich kaum Probleme damit, aber dieses Mal weiß ich echt nicht weiter.
folgendes:
[mm] f(x)=1/3x^4-4x^2+9 [/mm]

Davon soll ich die erste Ableitung machen.
Mein Ergebnis (nach den Regeln, die wir im Unterricht herausgefunden haben):
[mm] f'(x)=4/3x^3-8x [/mm]

Nun mein Problem: Wie kann ich jetzt weiter rechnen ?
Ich soll nun eig. mit "Sinnvollem Erraten" eine Nullstelle herausfinden, mit dieser dann Polynomdivision machen.
Jedoch weiß ich nicht, wie ich auf die Nullstelle komme. Schließlich steht am Ende kein Summand, von dem ich die Teiler, also die möglichen Nullstellen herausfinden kann.

Danke, für alle Hilfe, die ich bekomme!



        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mi 30.03.2011
Autor: kushkush

Hallo

Schreibe die Aufgabe hier rein!

Wenn du die Nullstelle der Ableitung willst,
klammere x aus und dann hast du eine Nullstelle.



Gruss
kushkush

Bezug
                
Bezug
Ableitung und Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 30.03.2011
Autor: GreenTreeTea

Aufgabe
1. von [mm] f(x)=1/3x^4-4x^2+9 [/mm] die erste Ableitung f'(x) herausfinden
2. Nullstellen von f'(x) herausfinden
3. Vorzeichenfolge von f'(x) auf einen Zahlenstrahl darstellen
4. die lokalen und absoluten Hoch- und Tiefpunkte errechnen
5. f'(x) zeichnen

Leider hilft mir das nicht weiter.

Die erste Ableitung hab ich ja geschafft: [mm] f'(x)=4/3x^3-8x [/mm]
Wenn ich nun x ausklammere erhalte ich: [mm] f'(x)=x*(4/3x^2-8) [/mm]
Wenn ich jetzt jedoch meine erratenen Zahlen für x einsetze, wie wir das sonst immer gemacht haben, erhalte ich nie 0.
Bisher hatten wir noch nie so eine Aufgabe, bei der durch das Erraten keine Nullstelle herausgefunden werden konnte.

Wie erhalte ich nun die Nullstelle mit der ich weiter arbeiten kann?

Bezug
                        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 30.03.2011
Autor: kushkush

Hallo


wenn du ausklammerst hast du in der Klammer eine quadratische Gleichung.


Gruss
kushkush

Bezug
                        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Do 31.03.2011
Autor: fred97


> 1. von [mm]f(x)=1/3x^4-4x^2+9[/mm] die erste Ableitung f'(x)
> herausfinden
>  2. Nullstellen von f'(x) herausfinden
>  3. Vorzeichenfolge von f'(x) auf einen Zahlenstrahl
> darstellen
>  4. die lokalen und absoluten Hoch- und Tiefpunkte
> errechnen
>  5. f'(x) zeichnen
>  Leider hilft mir das nicht weiter.
>  
> Die erste Ableitung hab ich ja geschafft: [mm]f'(x)=4/3x^3-8x[/mm]
>  Wenn ich nun x ausklammere erhalte ich:
> [mm]f'(x)=x*(4/3x^2-8)[/mm]
>  Wenn ich jetzt jedoch meine erratenen Zahlen für x
> einsetze, wie wir das sonst immer gemacht haben, erhalte
> ich nie 0.
> Bisher hatten wir noch nie so eine Aufgabe, bei der durch
> das Erraten keine Nullstelle herausgefunden werden konnte.
>  
> Wie erhalte ich nun die Nullstelle mit der ich weiter
> arbeiten kann?

Siehst Du denn nicht, dass x=0 eine Nullstelle von  $ [mm] f'(x)=x\cdot{}(4/3x^2-8) [/mm] $ ist ??

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]