matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung von Exp-Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Ableitung von Exp-Funktionen
Ableitung von Exp-Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von Exp-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Sa 10.06.2006
Autor: crash24

Aufgabe 1
Berechnen Sie die erste und zweite Ableitung der folgenden Funktion

[mm] f(x) = e^{e^x} [/mm]

Aufgabe 2
Bestimmen Sie alle lokalen Maxima und Minima der Funktion

[mm] f(x) = xe^x[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo.

zu Aufgabe 1:
Ich habe mich an dieser Aufgabe schon versucht und folgendes Ergebnis für die erste Ableitung

[mm] f'(x) = e^{e^x} [/mm]

Bin mir aber nicht sicher ob dies richtig ist.
Für die zweite Ableitung habe ich noch kein Ergebnis. Könnte es sein, dass sie ebenso wie die Stammfunktion lautet?

zu Aufgabe 2:

Ich komme mit dem Faktor vor [mm] e^x [/mm] nicht so ganz zurecht. Die Ableitung von [mm] e^x [/mm] lautet ja wieder [mm] e^x. [/mm] Kann man nicht den Faktor ausklammern und erhält dann als erste Ableitung wieder [mm] xe^x [/mm] ?

Freue mich über jede Hilfe.

Gruß
Crash





        
Bezug
Ableitung von Exp-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Sa 10.06.2006
Autor: Arkus

Hallo :)

In Aufgabe 1 liegt eine verkettete Funktion vor, deshalb musst du die Kettenregel anwenden:

f(x)=u(v(x)) -> f'(x)=u'(v(x)) * v'(x) (Ableitung der äußeren mal Ableitung der inneren Funktion)

also:

[mm] f(x)=e^{e^{x}} [/mm] -> [mm] f'(x)=e^{e^{x}} \cdot e^{x} [/mm]

Dabei ist [mm] e^{e^{x}} [/mm] die äußere und [mm] e^x [/mm] die innere Funktion.

Bei der zweiten Ableitung kannst du dann die Produktregel anwenden, in der du aber wieder die Kettenregel anwenden musst.

Oder eleganter: Du fasst den Ausdruck wegen der Potenzregel zusammen zu [mm] e^{e^{x}+x} [/mm] und leitest das wieder wie im ersten Schritt ab, mithilfe der Kettenregel.

In Aufgabe 2 liegt ein Produkt vor, deshalb musst du sturr nach der Produktregel ableiten:

f(x)=u(x) * v(x) -> f'(x)=u'(x)*v(x)+u(x)*v'(x)

Das x ist dein u(x) und das [mm] e^x [/mm] dein v(x).

MfG Arkus

Bezug
                
Bezug
Ableitung von Exp-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Sa 10.06.2006
Autor: crash24

@ Arkus

Vielen Dank für Deine schnelle Unterstützung.

Habe jetzt mal versucht die zweite Ableitung zu Aufgabe 1 zu berechnen und habe folgendes Ergebnis:

[mm] f''(x) = \left(e^{e^x}*e^x\right) * e^x + e^{e^x} * e^x [/mm]

Gruß
crash24

Bezug
                        
Bezug
Ableitung von Exp-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Sa 10.06.2006
Autor: Arkus


> @ Arkus
>  
> Vielen Dank für Deine schnelle Unterstützung.
>  
> Habe jetzt mal versucht die zweite Ableitung zu Aufgabe 1
> zu berechnen und habe folgendes Ergebnis:
>  
> [mm]f''(x) = \left(e^{e^x}*e^x\right) * e^x + e^{e^x} * e^x[/mm]
>  
> Gruß
> crash24

[ok]

Kannst es noch zusammenfassen zu: [mm] f'(x)=e^{e^x+2x}+e^{e^x+x} [/mm]

MfG Arkus

Bezug
                
Bezug
Ableitung von Exp-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Sa 10.06.2006
Autor: crash24

Hallo nochmal.

Für Aufgabe 2 habe ich die folgende Ableitung berechnet:

Stammfunktion war [mm] f(x) = x*e^x [/mm]

1. Ableitung

[mm] f'(x) = 1 * e^x + x * e^x [/mm]

Hoffe, dass dies die Lösungen sind.

Würde mich über ein Feedback freuen.

MfG
crash24

Bezug
                        
Bezug
Ableitung von Exp-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Sa 10.06.2006
Autor: Arkus


> Hallo nochmal.
>  
> Für Aufgabe 2 habe ich die folgende Ableitung berechnet:
>  
> Stammfunktion war [mm]f(x) = x*e^x[/mm]
>  
> 1. Ableitung
>  
> [mm]f'(x) = 1 * e^x + x * e^x[/mm]
>  
> Hoffe, dass dies die Lösungen sind.
>  
> Würde mich über ein Feedback freuen.
>  
> MfG
>  crash24

[ok]

Auch hier kannst du noch zusammenfassen: [mm] $f'(x)=e^x \cdot [/mm] (1+x)$

MfG Arkus

Bezug
                                
Bezug
Ableitung von Exp-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Sa 10.06.2006
Autor: crash24

@ Arkus

Vielen, vielen Dank!

Du hast mir sehr geholfen.

Wünsche Dir noch einen schönen Abend :-)

Gruß
crash24

Bezug
                                        
Bezug
Ableitung von Exp-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 So 11.06.2006
Autor: Arkus

Ups eine Mitteilung hätte gereicht ;)

Gerngeschehen, wünsche dir ebenfalls ne Gute Nacht :)

MfG Arkus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]