matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungAbleitung von Funktionen mit e
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Ableitung von Funktionen mit e
Ableitung von Funktionen mit e < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von Funktionen mit e: Frage
Status: (Frage) beantwortet Status 
Datum: 18:30 So 13.02.2005
Autor: peregrina

Hallo :) *newbie*
Also, ich weiß nicht mal so genau, ob das jetzt das korrekte Forum ist, weil mir die Bezeichnungen bei Mathe irgendwie immer recht unklar sind, aber egal, ich versuchs einfach mal hier... wollte (naja, musste triffts eher) Funktionen im Matheunterricht ableiten. Da waren aber zig falsch und mir ist nicht so ganz klar, warum etc. Unser Mathelehrer hatte lt. seiner Aussage die letzten 7 Jahre nur LK Ma... entsprechend "hochwissenschaftlich" sind dann immer seine Antworten... wär also super, wenn jemand meine Ableitungen angucken würde und mir sagen täte, was ich falsch gemacht habe. Naja, und ne Hilfe, wie ich denn zum Henker auf dieses Ergebnis komme, wär auch nicht schlecht ;)
Thanks in advance :)

f [mm] (x)=x*(-e)^x^3 [/mm] f ’(x)= [mm] (3*(x*(-e)^x^2)) [/mm] * (1* [mm] x*(-e)^x^3) [/mm] * [mm] (1*(-e)^x^3) [/mm]
f [mm] (x)=x^2 [/mm] - e^-x f ‘ (x)= 2x –(1*(-e^-1))(-e^-x)
f (x)=sin x *e^-x   f ‘ (x)= ((cos x) * (e^-x )) + ((sin x) * (-e^-x) = ( e^-x) * (cos x * (-sin x))
f (x)= [mm] e^e^x f [/mm] ‘ (x)= [mm] (e^e^x) [/mm] * [mm] (e^x) [/mm]

F (x)= (0,5 –x) * e^2x  = 0,5 [mm] e2^x [/mm] * (-x* e^2x) f(x)= (1* e^2x ) (-x* e^2x) + (0,5 e^2x *) (-2* e^2x)
F(x)= [mm] (x-1+3*e^x)*e^x [/mm] f(x)=( 1-1+ [mm] (3*e^x))( e^x) [/mm] + [mm] (e^x [/mm] ) [mm] (x-1+3*e^x) [/mm]
= [mm] (e^x) [/mm] * [mm] (3*e^x [/mm] + [mm] x-1+3*e^x) [/mm] = [mm] (6*e^x [/mm] +x-1) [mm] (e^x) [/mm]

- Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitung von Funktionen mit e: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 So 13.02.2005
Autor: marthasmith

Hallo,
ich gehe einfach mal mit dir die Ableitung durch:
$f [mm] (x)=x(-e)^{x^3}$ [/mm]
Anwendung der Produktregel:
f(x) = u * v  --> f'(x) = u'v+uv'

1.
Festlegen von u und v:
u = x
v = [mm] -e^{x^3} [/mm]
Bilden der Ableitung von u und v:
u' = 1
v' = [mm] -3xe^{x^3} [/mm]
Zusammensetzen:
f'(x) = [mm] 1*(-e^{x^3}) [/mm]  + x* [mm] (-3xe^{x^3}) [/mm]

$f [mm] (x)=x^2 [/mm]  - [mm] e^{-x}$ [/mm]

Diesmal kann man einfach jeden Teil für sich allein ableiten
f(x) = u + v  --> f'(x) = u' + v'
1. Festlegen von u und v:
u = [mm] x^2 [/mm]
v = [mm] -e^{-x} [/mm]
2. Bilden der Ableitung von u und v:
u' = 2x
v' = [mm] -(-1)e^{-x} [/mm]
3. Zusammensetzen:
f'(x) = 2x + [mm] (-(-1)e^{-x})= [/mm] 2x + [mm] e^{-x} [/mm]

F (x)= (0,5 –x) * e^2x  = 0,5  [mm] e2^x [/mm]  * (-x* e^2x)
Das ist nicht ganz richtig umgeformt.
F(x) = [mm] 0.5*e^{2x} [/mm] - [mm] x*e^{2x} [/mm]  funktioniert genauso, wie die anderen

Hier ist das Ergebnis:
f(x) = [mm] e^{2x} [/mm] - [mm] e^{2x} [/mm] - [mm] 2e^{2x} [/mm]

$F(x)= [mm] (x-1+3e^x)e^x [/mm] $
Anwenden der Produktregel
u = [mm] x-1+3e^x [/mm]
v = [mm] e^x [/mm]
u' = 1 + [mm] 3e^x [/mm]
v' = [mm] e^x [/mm]
Zusammensetzen:
f'(x) = (1 + [mm] 3e^x) [/mm] * [mm] e^x [/mm] +( [mm] x-1+3e^x) [/mm] * [mm] e^x [/mm]

Vielleicht ganz hilfreich das Ableiten der e Funktion

1. Man nimmt das was oben steht und leitet es ab
Bsp: [mm] e^{3x} \Rightarrow [/mm] oben steht: 3x ableiteten 3
2. Dann multipliziert man es mit dem ursprünglichen:
--> f'(x) = [mm] 3x*e^{3x} [/mm]

Außerdem das mit dem Ausmultiplizieren:

a*(b+c)= a*b + a*c

Bsp: -3x(-5-2z) = -3x*(-5) + (-3x)*(-2z)

Bei weiteren Fragen einfach nochmal schreiben  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]