matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbleitung von Ln(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Ableitung von Ln(x)
Ableitung von Ln(x) < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von Ln(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mo 04.10.2004
Autor: Flippper368

Hi,
gleich mal der Satz: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Jetzt zu meinem Problem :-). Also wir haben gerade die Ln Funktion abgeleitet, wie das von statten geht habe ich auch verstanden, der Ansatz hierzu gibt mir allerdings Rätsel auf! Wir haben zunächst die allgemeine Ableitung einer Umkehrfunktion gemacht. Hier erstmal meine Überlegung:
wenn y = f(x), dann ist doch die Umkehrfunktion x = f(y). So, wenn ich dass nun nach y auflöse bekomme ich y = [mm] f^{-} [/mm] (x). Ich verwende mal das hoch - als zeichen dafür dass ich die Umkehrfunktion meine.
Jetzt lautet unser Ansatz aber: x = [mm] f^{-} [/mm] (y). Aber wie kann dass denn mit meiner obigen Feststellung übereinstimmen? Es kann doch nicht gleichzeitig auch y = [mm] f^{-} [/mm] (x) sein. Habe ich damit jetzt nicht quasi eine doppelte Umkehrung gemacht, und bin wieder bei der Ausgangsfunktion?
Schonmal danke
Gruß Flipper

        
Bezug
Ableitung von Ln(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mo 04.10.2004
Autor: Hanno

Hi Flipper!

[willkommenmr]

> Habe ich damit jetzt nicht quasi eine doppelte Umkehrung gemacht, und bin wieder bei der Ausgangsfunktion?

Ja, ganz genau, da lag dein Fehler.
Du musst die Umkehrfunktion zu
$y=ln(x)$
bilden, und die lautet ja:
[mm] $x=e^y$ [/mm]
Hier darfst du jetzt nicht nochmal nach $y$ umstellen, denn dann wärst du, wie du richtig erkannt hast, wieder bei deiner Ausgangsfunktion. Stattdessen leitest du die Funktion nach $x$ ab und erhältst unter Verwendung der Kettenregel (y ist eine Funktion von x):
[mm] $1=y'\cdot e^{y}$ [/mm]
Wegen $y=ln(x)$ kannst du nun wieder substituieren und kommst zu dem Ergebnis:
[mm] $1=y'\cdot e^{ln(x)}=y'\cdot [/mm] x$
[mm] $\gdw y'=\frac{1}{x}$ [/mm]

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]