matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Ableitungen
Ableitungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Quotientenregel...
Status: (Frage) beantwortet Status 
Datum: 18:45 Do 22.09.2005
Autor: Darkz

Hallo,
wer von euch kann mir erklären, wie ich folgende funktion ableite??:

[mm] g(x)=x^2*(x-1) [/mm] bruchstrich [mm] (2x+1)^2 [/mm]

(nur 1. ableitung!!!!)
Danke schon mal im vorraus.

ICQ:266-867-166
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Do 22.09.2005
Autor: Loddar

Hallo Darkz,

[willkommenmr] !!


Du meinst also : [mm]g(x) \ = \ \bruch{x^2*(x-1)}{(2x+1)^2}[/mm]

(Wenn Du die Formel mal anklickst, sieht Du die Schreibweise für den Bruch ...)


Wie Du in Deiner Überschrift bereits bemerkt hast, kommt hier die MBQuotientenregel zur Anwendung.


Als Besonderheit musst Du für die Ableitung des Zähler auch noch die MBProduktregel anwenden ...


Also ...

Nenner: $v \ = \ [mm] (2x+1)^2$ $\Rightarrow$ [/mm]   $v' \ = \ 2*(2x+1)*2 \ = \ 4*(2x+1)$
(Hier kam auch noch die MBKettenregel zur Anwendung).


Zähler: $u \ = \ [mm] x^2*(x-1)$ [/mm]

Wenn Du nichts mit der MBProduktregel zu tun haben möchtest ;-) , kannst Du hier auch gerne ausmultiplizieren: $u \ = \ [mm] x^3-x^2$ [/mm]

[mm] $\Rightarrow$ [/mm]   $u' \ = \ [mm] 3x^2-2x$ [/mm]


Alternative mit der MBProduktregel:

$f \ = \ [mm] x^2$ $\Rightarrow$ [/mm]   $f' \ = \ 2x$
$g \ = \ x-1$   [mm] $\Rightarrow$ [/mm]   $g' \ = \ 1$

[mm] $\Rightarrow$ [/mm]   $u' \ = \ f'*g + f*g' \ = \ 2x*(x-1) + [mm] x^2*1 [/mm] \ = \ [mm] 2x^2-2x+x^2 [/mm] \ = \ [mm] 3x^2-2x$ [/mm]


Diese ermittelten Terme nun mal in die MBQuotientenregel einsetzen.

Schaffst Du das?


Gruß
Loddar


Bezug
                
Bezug
Ableitungen: Wie weiter???Hilfe!!!
Status: (Frage) beantwortet Status 
Datum: 20:12 Do 22.09.2005
Autor: Darkz

Hi Loddar
erst ma danke für die schnelle antwort!!!!
Aber jetzt hab ich die Terme in die Quotientenregel eingesetzt und nun kommt wieder nicht die richtige Lösung raus!!!!

die terme waren :
[mm] u(x)=x^2(x-1) [/mm]    
[mm] v(x)=(2x+1)^2 [/mm]
[mm] u'(x)=3x^2-2x [/mm]  
v(x)=4(2x+1)

oder hab ich einen fehlergemacht????
und wie geh ich mit der Klammer ^2 um(v(x))???auflösen????oder nicht??

Bezug
                        
Bezug
Ableitungen: Einsetzen
Status: (Antwort) fertig Status 
Datum: 20:21 Do 22.09.2005
Autor: MathePower

Hallo Darkz,

[willkommenmr]

> die terme waren :
>  [mm]u(x)=x^2(x-1)[/mm]    
> [mm]v(x)=(2x+1)^2[/mm]
>  [mm]u'(x)=3x^2-2x[/mm]  
> v(x)=4(2x+1)

das soll doch v'(x) heissen.

>  
> oder hab ich einen fehlergemacht????

nein, die Ableitungen stimmen alle.

>  und wie geh ich mit der Klammer ^2
> um(v(x))???auflösen????oder nicht??

Für v(x) wird [mm](2\;x\;+\;1)^{2}[/mm] eingesetzt.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]