matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbnahme und Zunahme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Abnahme und Zunahme
Abnahme und Zunahme < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abnahme und Zunahme: Idee
Status: (Frage) beantwortet Status 
Datum: 19:58 Sa 01.12.2012
Autor: Salva

Aufgabe
Bestimmen Sie die maximale Wachstumsgeschwindigkeit wie auch den Zeitpunkt der stärksten Annahme.

Hallo ihr Lieben!

Ich soll bei einer Aufgabe, in der es um eine Fischpopulation geht, die maximale Wachstumsgeschwindigkeit, sowie den Zeitpunkt der stärksten Abnahme berechnen.

Funktion: 4x * e^-0,5x
Bei der maximalen Geschwindigkeit würde ich also den Wendepunkt berechnen.

Als Ergebnis habe ich dann x=4 und y= 0
Kann ich dann sagen, dass an dieser Stelle, das Wachstum am höchsten ist?


Bei der Abnahme bin ich mir sehr unsicher. Ich war der Meinung, dass man auch hier wieder den Wendepunkt berechnen müsste, die Steigung dieses Wendepunktes aber negativ sein muss, damit es sich um eine Abnahme handelt.
Ich habe aber nur einen Wendepunkt ausrechnen können.

Wie kann ich also die Abnahme berechnen? Auch wieder durch einen Wendepunkt oder doch durch die Berechnung eines Tiefpunktes?


Liebe Grüße und vielen Dank im vorraus!

        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Sa 01.12.2012
Autor: MathePower

Hallo Salva,

> Bestimmen Sie die maximale Wachstumsgeschwindigkeit wie
> auch den Zeitpunkt der stärksten Annahme.
>  Hallo ihr Lieben!
>  
> Ich soll bei einer Aufgabe, in der es um eine
> Fischpopulation geht, die maximale
> Wachstumsgeschwindigkeit, sowie den Zeitpunkt der
> stärksten Abnahme berechnen.
>  
> Funktion: 4x * e^-0,5x
>  Bei der maximalen Geschwindigkeit würde ich also den
> Wendepunkt berechnen.
>  
> Als Ergebnis habe ich dann x=4 und y= 0
>  Kann ich dann sagen, dass an dieser Stelle, das Wachstum
> am höchsten ist?
>  

Ob an dieser Stelle die maximale Wachstumsgeschwindigkeit vorliegt,
musst Du erst nachweisen.


>
> Bei der Abnahme bin ich mir sehr unsicher. Ich war der
> Meinung, dass man auch hier wieder den Wendepunkt berechnen
> müsste, die Steigung dieses Wendepunktes aber negativ sein
> muss, damit es sich um eine Abnahme handelt.
> Ich habe aber nur einen Wendepunkt ausrechnen können.
>  
> Wie kann ich also die Abnahme berechnen? Auch wieder durch
> einen Wendepunkt oder doch durch die Berechnung eines
> Tiefpunktes?

>


Betrachte dazu die Funktion der ersten Ableitung
bzw. deren Eigenschaften.

  

>
> Liebe Grüße und vielen Dank im vorraus!


Gruss
MathePower

Bezug
                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 01.12.2012
Autor: Salva

Also ich habe jetzt bei der ersten Ableitung: f'(x)= e^-0,5x * (4-2x)

Dafür habe ich bei der Rechnung einen HP erhalten mit den Koordinaten 2/2,943

Das bedeutet, dass das Wachstum hier am höchsten ist, weil an der Stelle 2 die meisten Mikroorganismen hinzukommen.

Stimmt das so?

Tut mir leid, aber bei der Abnahme habe ich nach wie vor Schwierigkeiten. Ich habe mir die erste Ableitung angeguckt, verstehe es aber leider immernoch nicht.

Bezug
                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Sa 01.12.2012
Autor: MathePower

Hallo Salva,

> Also ich habe jetzt bei der ersten Ableitung: f'(x)=
> e^-0,5x * (4-2x)
>  
> Dafür habe ich bei der Rechnung einen HP erhalten mit den
> Koordinaten 2/2,943
>  
> Das bedeutet, dass das Wachstum hier am höchsten ist, weil
> an der Stelle 2 die meisten Mikroorganismen hinzukommen.
>
> Stimmt das so?
>  


Nein, das stimmt nicht.


> Tut mir leid, aber bei der Abnahme habe ich nach wie vor
> Schwierigkeiten. Ich habe mir die erste Ableitung
> angeguckt, verstehe es aber leider immernoch nicht.  


Entscheide erst um welche Art Extrema es sich
bei der ersten Ableitung an der Stelle x=4 handelt.


Gruss
MathePower

Bezug
                                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 So 02.12.2012
Autor: Salva

Hallo,

ich weiß nicht genau, wie ich das mit der maximalen Wachstumssteigung beweisen soll.

Es steht als Zusatzinformation, dass die t bei f(t) für die Zeit in Tagen steht, die Wachstumsgeschwindigkeit einer Population der Mikroorganismen in einem Lebensraum.

Das bedeutet doch, dass ich die Funktion für die Wachstumgeschwindigkeit bereits habe. Ich hab überhaupt kein Gefühl dafür, was es bedeutet, wenn ich jetzt die erste Ableitung bilde. Was sagt mir diese dann?

Ich habe trotzdem die erste Ableitung gleich null gesetzt und habe für t=-2 erhalten. An dieser Stelle ist ein Hochpunkt, doch weiß ich nicht so recht, ob das nun die maximale Wachstumssteigerung ist...



Bezug
                                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 02.12.2012
Autor: leduart

Hallo
Bitte zitiere in Zukunft gleich die exakte Aufgabe. ist jetzt richtig, dass f(t)=4t* e^-0,5t die Fischpopulation in Abh. von der Zeit ist? oder ist f(t) die Wachstumsheschwindigkeit?
Wenn das zweite der Fall ist, kannst du das Max und Min berechnen indem du f differenzierst.
Es ist immer gut, du lässt dir die Funktion erst einmal plotten, dann siehst du, das am Anfang die Geschwindigkeit zunimmt, ein Max erreicht und dann wieder abnimmt.
t=-2 ist sicher sinnlos, da die fkt ja wohl nur für t>0 definiert ist! da hast du also einen Rechenfehler. bitte poste nicht nur ergebnisse, sondern auch deine Rechnungen, z.B f'(t)
Gruss leduart

Bezug
                                                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 02.12.2012
Autor: Salva

f(t) ist, so wie ich es der Aufgabenstellung entnehmen kann beides. Also die Wachstumsgeschwindigkeit in Abhänigkeit von der Zeit.



Bezug
                                                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 02.12.2012
Autor: Steffi21

Hallo, laut Aufgabenstellung ist wohl

[mm] f(t)=4*t*e^{-0,5t} [/mm]

die Wachstumsgeschwindigkeit in Abhängigkeit von der Zeit, an der Stelle x=2 liegt ein Extrema vor, du mußt aber noch die Art klären
den Zeitpunkt der stärksten Abnahme bekommst du über die 2. Ableitung

Steffi


Bezug
                                                                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 So 02.12.2012
Autor: Salva

Vielen Dank, es hat sich dadurch für mich einiges erklärt.


Ich habe jetzt für das Extremum einen Hochpunkt mit den Koordinaten (2/2,94) berechnen können.

Über die zweite Ableitung habe ich einen Wendepunkt mit den Koordinaten (4/2,16) berechnen können. Die dritte Ableitung spielt hier doch aber auch eine entscheidende Rolle, oder? Für f'''(4) ergibt sich 0,135. Ich weiß, dass es auf jeden Fall etwas mit der Kurvenrichtung zu tun hat, aber ist das für meine Aufgabenstellung so wichtig?

Bezug
                                                                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 So 02.12.2012
Autor: Steffi21

Hallo, zum Zeitpunkt t=2...  hier fehlt die Einheit, ist aus der Aufgabe nicht ersichtlich, wird die maximale Wachstumsgeschwindigkeit erreicht, zum Zeitpunkt t=4... liegt die stärkste Abnahme vor, [mm] f'''(4)\not=0 [/mm] ist ausreichend, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]