matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAbschätzung 2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Abschätzung 2
Abschätzung 2 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung 2: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:42 Sa 28.11.2020
Autor: sancho1980

Aufgabe
Seien $y, <_0 [mm] \in \IR$, [/mm] und sei [mm] $\epsilon [/mm] > 0$ vorgegeben. Beweisen Sie:

Ist [mm] $y_0 \not= [/mm] 0 $ und ist [mm] $\vert [/mm] y - [mm] y_0 [/mm] < [mm] min(\frac{\vert y_0 \vert}{2}, \frac{\epsilon \vert y_0 \vert^2}{2})$, [/mm] dann ist $y [mm] \not= [/mm] 0$, und es gilt [mm] $\vert \frac{1}{y} [/mm] - [mm] \frac{1}{y_0} \vert [/mm] < [mm] \epsilon$. [/mm]

Hallo,
wollte es mal allein schaffen, habe aber einen etwas "unorthodoxen" Weg gewählt. Kann mir einer sagen, ob das so zulässig ist:

1) Es gilt $y [mm] \not= [/mm] 0$, denn angenommen $y = 0$. Dann ist [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] = [mm] \vert [/mm] - [mm] y_0 \vert [/mm] = [mm] \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}$. [/mm]
2) Es gilt $y > 0 [mm] \Leftrightarrow y_0 [/mm] > 0$, denn angenommen [mm] $\neg(y [/mm] > 0 [mm] \Leftrightarrow y_0 [/mm] > 0)$. Dann ist [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] > [mm] \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}$. [/mm]
3) Es gilt [mm] $\vert [/mm] y [mm] \vert [/mm] > [mm] \frac{1}{2} \vert y_0 \vert$, [/mm] denn angenommen [mm] $\vert [/mm] y [mm] \vert \le \frac{1}{2} \vert y_0 \vert$. [/mm] Dann folgt mit $y > 0 [mm] \Leftrightarrow y_0 [/mm] > 0$, dass [mm] $\vert [/mm] y - [mm] y_0 \vert \ge \vert \frac{1}{2} y_0 [/mm] - [mm] y_0 \vert \not< \frac{\vert y_0 \vert}{2}$. [/mm]
4) Es gilt [mm] $\vert [/mm] y [mm] \vert [/mm] < [mm] \frac{3}{2} \vert y_0 \vert$, [/mm] denn angenommen [mm] $\vert [/mm] y [mm] \vert \ge \frac{3}{2} \vert y_0 \vert$. [/mm] Dann folgt mit $y > 0 [mm] \Leftrightarrow y_0 [/mm] > 0$, dass [mm] $\vert [/mm] y - [mm] y_0 \vert \ge \vert \frac{3}{2} y_0 [/mm] - [mm] y_0 \vert \not< \frac{\vert y_0 \vert}{2}$. [/mm]
5) Es gilt [mm] $\vert \frac{1}{y} [/mm] - [mm] \frac{1}{y_0} \vert [/mm] = [mm] \vert \frac{y_0 - y}{y y_0} \vert [/mm] = [mm] \vert \frac{y - y_0}{y y_0} \vert [/mm] < [mm] \vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert [/mm] < [mm] \epsilon$, [/mm] denn angenommen [mm] $\vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert \ge \epsilon$. [/mm] Dann folgt [mm] $\vert \frac{ y_0 }{2 y} \vert \ge [/mm] 1 [mm] \Rightarrow \frac{1}{2} \vert y_0 \vert \ge \vert [/mm] y [mm] \vert \not> \frac{1}{2} \vert y_0 \vert$. [/mm]

Danke und Gruß,

Martin

        
Bezug
Abschätzung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 06:39 Sa 28.11.2020
Autor: tobit09

Hallo Martin,


> 1) Es gilt [mm]y \not= 0[/mm], denn angenommen [mm]y = 0[/mm]. Dann ist [mm]\vert y - y_0 \vert = \vert - y_0 \vert = \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].

Ja.

(Ich würde [mm] $\ge$ [/mm] statt [mm] $\not<$ [/mm] schreiben.)


> 2) Es gilt [mm]y > 0 \Leftrightarrow y_0 > 0[/mm], denn angenommen
> [mm]\neg(y > 0 \Leftrightarrow y_0 > 0)[/mm]. Dann ist [mm]\vert y - y_0 \vert > \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].

Wie kommst du von [mm] $\neg(y [/mm] > 0 [mm] \Leftrightarrow y_0 [/mm] > 0)$ auf [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] > [mm] \vert y_0\vert$? [/mm] Das ist korrekt, sollte aber aus meiner Sicht näher begründet werden.


> 3) Es gilt [mm]\vert y \vert > \frac{1}{2} \vert y_0 \vert[/mm],

Ja.

> denn angenommen [mm]\vert y \vert \le \frac{1}{2} \vert y_0 \vert[/mm].
> Dann folgt mit [mm]y > 0 \Leftrightarrow y_0 > 0[/mm], dass [mm]\vert y - y_0 \vert \ge \vert \frac{1}{2} y_0 - y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].

Stimmt zwar, aber wie begründest du [mm] $\vert [/mm] y - [mm] y_0 \vert \ge \vert \frac{1}{2} y_0 [/mm] - [mm] y_0 \vert$? [/mm] Hier überlässt du sehr viel dem Leser...


> 4) Es gilt [mm]\vert y \vert < \frac{3}{2} \vert y_0 \vert[/mm],
> denn angenommen [mm]\vert y \vert \ge \frac{3}{2} \vert y_0 \vert[/mm].
> Dann folgt mit [mm]y > 0 \Leftrightarrow y_0 > 0[/mm], dass [mm]\vert y - y_0 \vert \ge \vert \frac{3}{2} y_0 - y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].

Hier gilt Analoges zu (3).


> 5) Es gilt [mm]\vert \frac{1}{y} - \frac{1}{y_0} \vert = \vert \frac{y_0 - y}{y y_0} \vert = \vert \frac{y - y_0}{y y_0} \vert < \vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert < \epsilon[/mm],
> denn angenommen [mm]\vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert \ge \epsilon[/mm].
> Dann folgt [mm]\vert \frac{ y_0 }{2 y} \vert \ge 1 \Rightarrow \frac{1}{2} \vert y_0 \vert \ge \vert y \vert \not> \frac{1}{2} \vert y_0 \vert[/mm].

Ja. [ok]

(Das [mm] $\not>\frac{1}{2}|y_0|$ [/mm] würde ich weglassen und stattdessen auf den Widerspruch zu 3) verweisen.)


Du hast die Aufgabe in der Tat sehr unorthodox gelöst.

Der Kern deiner Argumentation steckt in 5).
4) verwendest du gar nicht, kannst du also einfach streichen.
Aus 1) bis 3) benötigst du eigentlich nur [mm] |y|>\frac{1}{2}|y_0|>0. [/mm]

Die Ungleichung [mm] $|y|>\frac{1}{2}|y_0|$ [/mm] erhält man fast geschenkt, wenn man zwei Rechenregeln aus der Analysis kennt:

a) Für alle reellen Zahlen $a$ und $b$ gilt [mm] $|a-b|\ge\left||a|-|b|\right|$. [/mm] ("Abstände werden nicht größer, wenn man Beträge nimmt.")

b) Für alle reellen Zahlen $a$ und [mm] $a_0$ [/mm] sowie alle [mm] $\delta>0$ [/mm] (bzw. sogar für alle reellen Zahlen [mm] $\delta$) [/mm] gilt die Äquivalenz

     [mm] $|a-a_0|<\delta\iff a_0-\delta
("$a$ hat zu [mm] $a_0$ [/mm] genau dann kleineren Abstand als [mm] $\delta$, [/mm] wenn $a$ im Intervall [mm] $(a_0-\delta,a_0+\delta)$ [/mm] liegt.")

In deiner Aufgabe haben nach Voraussetzung $y$ und [mm] $y_0$ [/mm] Abstand kleiner [mm] $\delta:=\frac{|y_0|}{2}$. [/mm]
Unter Verwendung von a) überlegt man sich, dass auch $|y|$ und [mm] $|y_0|$ [/mm] Abstand kleiner [mm] $\delta$ [/mm] haben.
Nach b) und Definition von [mm] $\delta$ [/mm] bedeutet letzteres nichts anderes als [mm] $|y_0|-\frac{|y_0|}{2}<|y|<|y_0|+\frac{|y_0|}{2}$. [/mm]
Erstere dieser beiden Ungleichungen liefert wie gewünscht [mm] $|y|>\frac{1}{2}|y_0|$. [/mm]


Wann immer du eine Ungleichung der Art [mm] $|y-y_0|<\gamma$ [/mm] siehst, kann es hilfreich sein, sie zu lesen als "$y$ liegt nahe an [mm] $y_0$, [/mm] genauer gesagt im Intervall [mm] $(y_0-\gamma,y_0+\gamma)$". [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Abschätzung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:23 Sa 28.11.2020
Autor: sancho1980

Hallo,
super vielen Dank!

>  Aus 1) bis 3) benötigst du eigentlich nur
> [mm]|y|>\frac{1}{2}|y_0|>0.[/mm]

Nicht ganz, denn 1) ist laut Aufgabenstellung auch zu zeigen.

Viele Grüße,
Martin


edit: Merk grad, du hast ja noch ...$> 0$ geschrieben ...

Bezug
                        
Bezug
Abschätzung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Sa 28.11.2020
Autor: tobit09


> >  Aus 1) bis 3) benötigst du eigentlich nur

> > [mm]|y|>\frac{1}{2}|y_0|>0.[/mm]
>  
> Nicht ganz, denn 1) ist laut Aufgabenstellung auch zu
> zeigen.
> [...]
> edit: Merk grad, du hast ja noch ...[mm]> 0[/mm] geschrieben ...

Du hast schon Recht, man sollte explizit erklären warum [mm] $y\not=0$ [/mm] gilt.
Das folgt in der Tat aus $|y|>0$, was wir wiederum aus der Ungleichungskette [mm] $|y|>\frac{1}{2}|y_0|>0$ [/mm] (hier geht [mm] $y_0\not=0$ [/mm] ein) erhalten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]