matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikAbschätzung relativer Fehler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Abschätzung relativer Fehler
Abschätzung relativer Fehler < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung relativer Fehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Mi 20.02.2008
Autor: hansmaulwurf82

Aufgabe
F(a,b) = a b + [mm] \bruch{\pi}{4} [/mm] * a²
Berechnen Sie eine Abschätzung des reltiven Fehlers im Flächeninhalt, wobei a=2 cm, b=3 cm und die rel. Fehler in a 1% und b 2% betragen.

Hallo,
Wie gehe ich hier vor?

Danke,
Johannes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abschätzung relativer Fehler: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mi 20.02.2008
Autor: leduart

Hallo

[mm] \Delta F=\bruch{\partial F}{\partial a}*\Delta a+\bruch{\partial F}{\partial b}*\Delta [/mm] b

dann [mm] \bruch{\Delta F}{F} [/mm] so schreiben, dass [mm] \bruch{\Delta a}{a} [/mm] und [mm] \bruch{\Delta b}{b} [/mm] drin stehen.

Gruss leduart

Bezug
                
Bezug
Abschätzung relativer Fehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mi 20.02.2008
Autor: Mathias08

Das verstehe ich nicht!

Habe ich im ersten Teil nicht den relativen Fehler von a und im zweiten Teil den relativen Fehler von b und diese dann addiert? Das ist doch dann mein Ergebnis.

Bezug
                        
Bezug
Abschätzung relativer Fehler: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mi 20.02.2008
Autor: leduart

Hallo
Nein! [mm] \Delta [/mm] a ist der absolute Fehler [mm] \Delta [/mm] a/a der relative Fehle.
Bsp F=ab  [mm] \Delta [/mm] F [mm] =b*\Delta [/mm] a + [mm] a*\Delta [/mm] b
[mm] \Delta F/F=(b*\Delta [/mm] a + [mm] a*\Delta b)/(ab)=\Delta [/mm] a/a + [mm] \Delta [/mm] b(b
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]